Skip to main content
Log in

Microstructure and texture evolution of TB8 titanium alloys during hot compression

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, microstructure and texture evolution of TB8 titanium alloys during hot deformation were investigated by using electron back-scattered diffraction (EBSD) analysis. The results showed that dynamic recrystallization (DRX) behavior of TB8 titanium alloys was drastically sensitive to the strain. As the true strain raised from 0.2 to 0.8, the degree of DRX gradually increased. The nucleation mechanism of recrystallization was observed, including discontinuous dynamic recrystallization (DDRX) resulting from the bulging of original boundaries. Furthermore, continuous dynamic recrystallization (CDRX) occurred because of the transformation of low-angle grain boundaries (LAGBs) to high-angle grain boundaries (HAGBs) in the interior of the original deformed grains. The texture evolution of TB8 titanium alloy during hot deformation process was analyzed in detail, and five texture components were observed, including {001}\(\left\langle { 100} \right\rangle\), {011}\(\left\langle { 100} \right\rangle\), {112}\(\left\langle { 1 10} \right\rangle\), {111}\(\left\langle { 1 10} \right\rangle\), and {111}\(\left\langle { 1 1 2} \right\rangle\). As the true strain increased, deformation textures were gradually weakened due to an increase in the volume fraction of DRX grains. When the true strain was 0.8, the main texture components consisted of the recrystallization texture components of the {001}\(\left\langle { 100} \right\rangle\) and {011}\(\left\langle { 100} \right\rangle\) textures.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu TW, Li JS, Zhang FS, Wang FY, Liu XH, Feng Y. Microstructure evolution during cold-deformation and aging response after annealing of TB8 titanium alloy. Rare Metal Mat Eng. 2016;45(3):0575.

    Article  Google Scholar 

  2. Tang B, Tang B, Han FB, Yang GJ, Li JS. Influence of strain rate on stress induced martensitic transformation in β solution treated TB8 alloy. J Alloys Compd. 2013;565:1.

    Article  CAS  Google Scholar 

  3. Wu Y, Kou HC, Wu ZH, Tang B, Li JS. Dynamic recrystallization and texture evolution of Ti–22Al–25Nb alloy during plane–strain compression. J Alloys Compd. 2018;749:844.

    Article  CAS  Google Scholar 

  4. Chen JH, Li JS, Tang B, Chen Y, Kou HC. Microstructure and texture evolution of a near β titanium alloy Ti–7333 during continuous cooling hot deformation. Prog Nat Sci Mater. 2019;29(1):50.

    Article  CAS  Google Scholar 

  5. Ghasemi E, Zarei-Hanzaki A, Farabi E, Tesař K, Jäger A, Rezaee M. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: a study using process map development. J Alloys Compd. 2017;695:1706.

    Article  CAS  Google Scholar 

  6. Wang G, Xu L, Tian YX, Zheng Z, Cui YY, Yang R. Flow behavior and microstructure evolution of a P/M TiAl alloy during high temperature deformation. Mater Sci Eng, A. 2011;528:6754.

    Article  CAS  Google Scholar 

  7. Zhang Y, Wang XP, Kong FT, Sun LL, Chen YY. Microstructure, texture and mechanical properties of Ti–43Al–9 V–0.2Y alloy hot-rolled at various temperatures. J Alloys Compd. 2019;777:795.

    Article  CAS  Google Scholar 

  8. Qu WT, Sun XG, Hui SX, Wang ZG, Yan L. High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. Rare Met. 2018;37(3):217.

    Article  CAS  Google Scholar 

  9. Mantri SA, Banerjee R. Microstructure and micro-texture evolution of additively manufactured β–Ti alloys. Addit Manuf. 2018;23:86.

    CAS  Google Scholar 

  10. Yin LX, Liang SX, Zheng LY, Shi YD, Xie HL, Ma MZ, Liu RP. Microstructural and textural evolutions of TZ410 alloy under various rolling conditions. Mate. Charact. 2016;121:199.

    Article  CAS  Google Scholar 

  11. Lu SY, Ma FC, Liu P, Li W. Microstructure and mechanical properties of TiB reinforced titanium matrix composites with heat treatment. Chin J Rare Met. 2018;42(4):379.

    Google Scholar 

  12. Duan YP, Ping L, Xue KM, Zhang Q, Wang XX. Flow behavior and microstructure evolution of TB8 alloy during hot deformation process. Trans Nonferrous Met Soc. 2007;17(6):1199.

    Article  CAS  Google Scholar 

  13. Tang B, Tang B, Han FB, Li JS, Yang GJ. Hot deformation behavior of TB8 alloy near the β–transus. Rare Metal Mat Eng. 2013;42(9):1761.

    Article  CAS  Google Scholar 

  14. Yang QY, Ma M, Tan YB, Xiang S, Zhao F, Liang YL. Initial β grain size effect on high-temperature flow behavior of TB8 titanium alloys in single β phase field. Metals. 2019;9(8):891.

    Article  CAS  Google Scholar 

  15. Lin YC, Wu XY, Chen XM, Chen J, Wen DX, Zhang JL, Li LT. EBSD study of a hot deformed nickel-based superalloy. J Alloys Compd. 2015;640:101.

    Article  CAS  Google Scholar 

  16. Lin YC, He DG, Chen MS, Chen XY, Zhao CY, Ma X, Long ZL. EBSD analysis of evolution of dynamic recrystallization grains and δ phase in a nickel–based superalloy during hot compressive deformation. Mater Des. 2016;97:13.

    Article  CAS  Google Scholar 

  17. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32:1733.

    Article  CAS  Google Scholar 

  18. Chen XM, Lin YC, Chen MS, Li HB, Wen DX, Zhang JL, He M. Microstructural evolution of a nickel–based superalloy during hot deformation. Mater Des. 2015;77:41.

    Article  CAS  Google Scholar 

  19. Sander B, Raabe D. Texture inhomogeneity in a Ti–Nb–based β–titanium alloy after warm rolling and recrystallization. Mater Sci Eng, A. 2008;479:236.

    Article  Google Scholar 

  20. Yuan C, Gao X, Li JH, Bao XQ. Secondary recrystallization of Goss texture in magnetostrictive Fe–Ga-based sheets. Rare Met. 2020;39(11):1288.

    Article  Google Scholar 

  21. Xu YF, Yi DQ, Liu HQ, Wu XY, Wang B, Yang FL. Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications. Mater Sci Eng, A. 2012;547:64.

    Article  CAS  Google Scholar 

  22. Gupta A, Khatirkar RK, Kumar A, Thool K, Bibhanshu N, Suwas S. Microstructure and texture development in Ti–15 V–3Cr–3Sn–3Al alloy–possible role of strain path. Mater Charact. 2019;156:109884.

    Article  CAS  Google Scholar 

  23. Hölscher M, Raabe D, Lücke K. Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals. Acta Metall Mater. 1994;42(3):879.

    Article  Google Scholar 

  24. Chen Y, Li JS, Tang B, Kou HC, Xue XY, Cui YW. Texture evolution and dynamic recrystallization in a beta titanium alloy during hot-rolling process. J Alloys Compd. 2015;618:146.

    Article  CAS  Google Scholar 

  25. Barnett MR, Jonas JJ. Influence of ferrite rolling temperature on grain size and texture in annealed low C and IF steels. ISIJ Int. 1997;37(7):706.

    Article  CAS  Google Scholar 

  26. Barnett MR. Role of in-grain shear bands in the nucleation of 〈111〉//ND recrystallization textures in warm rolled steel. ISIJ Int. 1998;38(1):78.

    Article  CAS  Google Scholar 

  27. Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Oxford: Elsevier; 2004. 251.

    Google Scholar 

  28. Hasegawa M, Yamamoto M, Fukutomi H. Formation mechanism of texture during dynamic recrystallization in γ–TiAl, nickel and copper examined by microstructure observation and grain boundary analysis based on local orientation measurements. Acta Mater. 2003;51(13):3939.

    Article  CAS  Google Scholar 

  29. Li K, Yang P. The formation of strong 100 texture by dynamic strain-induced boundary migration in hot compressed Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Metals-Basel. 2017;7(10):412.

    Article  Google Scholar 

  30. Gu B, Chekhonin P, Schaarschuch R, Oertel CG, Xin SW, Ma CL, Zhou L, Gan WM, Skrotzki W. Microstructure, texture and hardness of a metastable β–titanium alloy after bar-rolling and annealing. J Alloys Compd. 2020;825:154082.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51804087), the Science and Technology Cooperative Foundation of Guizhou province (Nos. [2017]7240 and [2017]5788), the Basic Research Program of Guizhou Province (No. [2019]1091), and the Youth Science and Technology Talent Growth Project of Guizhou Education Bureau (No. [2018]107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Biao Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, QY., Ma, M., Tan, YB. et al. Microstructure and texture evolution of TB8 titanium alloys during hot compression. Rare Met. 40, 2917–2926 (2021). https://doi.org/10.1007/s12598-020-01643-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01643-7

Keywords

Navigation