Insight into crystal growth and upconversion luminescence property of tetragonal Ba3Sc2F12 nanocrystals

Abstract

Sc-based nanomaterials have attracted considerable attention due to their unique optical properties different from those of Ln/Y-based nanomaterials. However, studies on Sc-based nanomaterials are far from comprehensive. Particularly, nanoscale alkaline (Ca, Sr and Ba) scandium fluorides were almost ignored for their stringent synthetic conditions. Herein, we synthesize high-quality tetragonal phase Ba3Sc2F12 nanocrystals with uniform morphology and good dispersibility by carefully tailoring the reaction conditions, such as the molar ratio of reactants, temperature and reaction time. Then, the upconversion (UC) luminescence property of Ba3Sc2F12:Yb/Er (Ho) samples is investigated in detail. The doping concentrations of sensitizer (Yb3+) and activator (Er3+ and Ho3+) are optimized for the strongest UC luminescence, of which the corresponding energy transfer processes are also discussed. Moreover, tetragonal Ba3Sc2F12 nanocrystals can gradually transform into hexagonal Ba4Yb3F17 nanocrystals with the increase in Yb3+ doping content. This work provides a novel type of Sc-based nanomaterials with strong red UC emissions which are promising in high-resolution 3-dimensional color displays, laser, bioimaging and biolabels.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. [1]

    Gargas DJ, Chan EM, Ostrowski AD, Aloni S, Altoe MV, Barnard ES, Sanii B, Urban JJ, Milliron DJ, Cohen BE, Schuck PJ. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol. 2014;9(4):300.

    CAS  Google Scholar 

  2. [2]

    Czerny J, Heil F, Egbers CJ, Haase M. Size-controlled growth of β-NaGdF4 and β-NaGdF4: Yb, Er nanocrystals: the influence of the surface area of NaF on the nucleation of the β-phase. Chem Mater. 2020;32(13):5691.

    CAS  Google Scholar 

  3. [3]

    Wu Y, Xu J, Poh ET, Liang L, Liu H, Yang JKW, Qiu CW, Vallee RAL, Liu X. Upconversion superburst with sub-2 mus lifetime. Nat Nanotechnol. 2019;14(12):1110.

    CAS  Google Scholar 

  4. [4]

    Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc. 2012;134(2):1323.

    CAS  Google Scholar 

  5. [5]

    Zhao JB, Wu LL. Yb3+- and Er3+-doped Y2O3 microcrystals for upconversion photoluminescence and energy transfer with enhancements of near-ultraviolet emission. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01269-4.

    Article  Google Scholar 

  6. [6]

    Zuo SL, Chen P, Pan CF. Mechanism of magnetic field-modulated luminescence from lanthanide ions in inorganic crystal: a review. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01450-0.

    Article  Google Scholar 

  7. [7]

    Xie J, Gao Z, Zhou E, Cheng X, Wang Y, Xie X, Huang L, Huang W. Insights into the growth mechanism of REF3 (RE = La–Lu, Y) nanocrystals: hexagonal and/or orthorhombic. Nanoscale. 2017;9(41):15974.

    CAS  Google Scholar 

  8. [8]

    Liu Y, Tu D, Zhu H, Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev. 2013;42(1):6924.

    CAS  Google Scholar 

  9. [9]

    Lin LS, Yang X, Zhou Z, Yang Z, Jacobson O, Liu Y, Yang A, Niu G, Song J, Yang HH, Chen X. Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform. Adv Mater. 2017;29(21):1606681.

    Google Scholar 

  10. [10]

    Lu F, Yang L, Ding Y, Zhu JJ. Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy. Adv Funct Mater. 2016;26(26):4778.

    CAS  Google Scholar 

  11. [11]

    Wang Y, Zhou J, Gao J, Zhang K, Gao C, Xie X, Huang L. Physical manipulation of lanthanide-activated photoluminescence. Ann Phys. 2019;531(9):1900026.

    Google Scholar 

  12. [12]

    Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev. 2015;44(6):1416.

    CAS  Google Scholar 

  13. [13]

    Zhang K, Song S, Huang S, Yang L, Min Q, Wu X, Lu F, Zhu JJ. Lighting up MicroRNA in living cells by the disassembly of lock-like DNA-programmed UCNPs-AuNPs through the target cycling amplification strategy. Small. 2018;14:1802292.

    Google Scholar 

  14. [14]

    Xue W, Di Z, Zhao Y, Zhang A, Li L. DNA-mediated coordinative assembly of upconversion hetero-nanostructures for targeted dual-modality imaging of cancer cells. Chin Chem Lett. 2019;30(4):899.

    CAS  Google Scholar 

  15. [15]

    Yu S, Tu D, Lian W, Xu J, Chen X. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci China Mater. 2019;62(8):1071.

    CAS  Google Scholar 

  16. [16]

    Park YI, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev. 2015;44(6):1302.

    CAS  Google Scholar 

  17. [17]

    Ren N, Liang N, Yu X, Wang A, Xie J, Sun C. Ligand-free upconversion nanoparticles for cell labeling and their effects on stem cell differentiation. Nanotechnology. 2020;31(14):145101.

    CAS  Google Scholar 

  18. [18]

    Liang L, Chen N, Jia Y, Ma Q, Wang J, Yuan Q, Tan W. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 2019;12(6):1279.

    CAS  Google Scholar 

  19. [19]

    Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev. 2004;104(1):139.

    CAS  Google Scholar 

  20. [20]

    Xie X, Li Z, Zhang Y, Guo S, Pendharkar AI, Lu M, Huang L, Huang W, Han G. Emerging approximately 800 nm excited lanthanide-doped upconversion nanoparticles. Small. 2017;13(6):1602843.

    Google Scholar 

  21. [21]

    Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10(11):924.

    CAS  Google Scholar 

  22. [22]

    Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications. Chem Rev. 2015;115(1):395.

    CAS  Google Scholar 

  23. [23]

    Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev. 2015;115(19):10725.

    CAS  Google Scholar 

  24. [24]

    Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC. Broadband dye-sensitized upconversion of near-infrared light. Nat Photon. 2012;6(8):560.

    CAS  Google Scholar 

  25. [25]

    Shen J, Chen G, Vu AM, Fan W, Bilsel OS, Chang CC, Han G. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater. 2013;1(9):644.

    Google Scholar 

  26. [26]

    Feng W, Sun LD, Yan CH. Ag nanowires enhanced upconversion emission of NaYF4: Yb, Er nanocrystals via a direct assembly method. Chem Commun. 2009;29(29):4393.

    Google Scholar 

  27. [27]

    Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater. 2011;10(12):968.

    CAS  Google Scholar 

  28. [28]

    Dou Q, Zhang Y. Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir. 2011;27(21):13236.

    CAS  Google Scholar 

  29. [29]

    Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed. 2010;49(41):7456.

    CAS  Google Scholar 

  30. [30]

    Wang J, Wang F, Wang C, Liu Z, Liu X. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed. 2011;50(44):10369.

    CAS  Google Scholar 

  31. [31]

    Su Q, Han S, Xie X, Zhu H, Chen H, Chen CK, Liu RS, Chen X, Wang F, Liu X. The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc. 2012;134(51):20849.

    CAS  Google Scholar 

  32. [32]

    Yuan P, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu QH. Plasmon enhanced upconversion luminescence of NaYF4: Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale. 2012;4(16):5132.

    CAS  Google Scholar 

  33. [33]

    Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GW, Shi S, Yan CH. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J Am Chem Soc. 2015;137(20):6569.

    CAS  Google Scholar 

  34. [34]

    Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44(6):1346.

    CAS  Google Scholar 

  35. [35]

    Ai Y, Tu D, Zheng W, Liu Y, Kong J, Hu P, Chen Z, Huang M, Chen X. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection. Nanoscale. 2013;5(14):6430.

    CAS  Google Scholar 

  36. [36]

    Hu L, Chen J, Sanson A, Wu H, Rodriguez CG, Olivi L, Ren Y, Fan L, Deng J, Xing X. New Insights into the negative thermal expansion: direct experimental evidence for the “guitar-string” effect in cubic ScF3. J Am Chem Soc. 2016;138(27):8320.

    CAS  Google Scholar 

  37. [37]

    Hu L, Qin F, Sanson A, Huang LF, Pan Z, Li Q, Sun Q, Wang L, Guo F, Aydemir U, Ren Y, Sun C, Deng J, Aquilanti G, Rondinelli JM, Chen J, Xing X. Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks. J Am Chem Soc. 2018;140(13):4477.

    CAS  Google Scholar 

  38. [38]

    Xie J, Xie X, Mi C, Gao Z, Pan Y, Fan Q, Su H, Jin D, Huang L, Huang W. Controlled synthesis, evolution mechanisms, and luminescent properties of ScFx: Ln (x = 2.76, 3) nanocrystals. Chem Mater. 2017;29(22):9758.

    CAS  Google Scholar 

  39. [39]

    Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Tok AI, Han Y, Zhang Q, Fan Q, Huang W, Capobianco JA, Huang L. Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J Am Chem Soc. 2012;134(20):8340.

    CAS  Google Scholar 

  40. [40]

    Ding Y, Teng X, Zhu H, Wang L, Pei W, Zhu JJ, Huang L, Huang W. Orthorhombic KSc2F7: Yb/Er nanorods: controlled synthesis and strong red upconversion emission. Nanoscale. 2013;5(23):11928.

    CAS  Google Scholar 

  41. [41]

    Fu H, Yang G, Gai S, Niu N, He F, Xu J, Yang P. Color-tunable and enhanced luminescence of well-defined sodium scandium fluoride nanocrystals. Dalton Trans. 2013;42(22):7863.

    CAS  Google Scholar 

  42. [42]

    He X, Yan B. “One-stone–two-birds” modulation for Na3ScF6-based novel nanocrystals: simultaneous morphology evolution and luminescence tuning. Cryst Growth Des. 2014;14(7):3257.

    CAS  Google Scholar 

  43. [43]

    Pei WB, Wang L, Wu J, Chen B, Wei W, Lau R, Huang L, Huang W. Controlled synthesis of uniform NaxScF3+x nanopolyhedrons, nanoplates, nanorods, and nanospheres using solvents. Cryst Growth Des. 2015;15(6):2988.

    CAS  Google Scholar 

  44. [44]

    Wang Y, Yang B, Chen K, Zhou E, Zhang Q, Yin L, Xie X, Gu L, Huang L. Interconversion between KSc2F7: Er and K2NaScF6: Yb/Er nanocrystals: the role of chemistry. Dalton Trans. 2018;47(14):4950.

    CAS  Google Scholar 

  45. [45]

    Zhao B, Shen D, Yang J, Hu S, Zhou X, Tang J. Lanthanide-doped Sr2ScF7 nanocrystals: controllable hydrothermal synthesis, the growth mechanism and tunable up/down conversion luminescence properties. J Mater Chem C. 2017;5(13):3264.

    CAS  Google Scholar 

  46. [46]

    Wang W, Li YX, Hu SS, Zhang XM, Tang JF, Yang J. Hydrothermal synthesis of Ba3Sc2F12:Yb3+, Ln3+ (Ln = Er, Ho, Tm) crystals and their up conversion white light emission. RSCAdv. 2017;7(89):56229.

    CAS  Google Scholar 

  47. [47]

    Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128(19):6426.

    CAS  Google Scholar 

  48. [48]

    Peng XG. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv Mater. 2003;15(5):459.

    CAS  Google Scholar 

  49. [49]

    Liu C, Wang H, Li X, Chen D. Monodisperse, size-tunable and highly efficient β-NaYF4: Yb, Er (Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem. 2009;19(21):3546.

    CAS  Google Scholar 

  50. [50]

    Zheng G, Mourdikoudis S, Zhang Z. Plasmonic metallic heteromeric nanostructures. Small. 2020. https://doi.org/10.1002/smll.202002588.

    Article  Google Scholar 

  51. [51]

    Raj AN, Rinkel T, Haase M. Ostwald ripening, particle size focusing, and decomposition of sub-10 nm NaREF4 (RE = La, Ce, Pr, Nd) nanocrystals. Chem Mater. 2014;26(19):5689.

    Google Scholar 

  52. [52]

    Rinkel T, Nordmann J, Raj AN, Haase M. Ostwald-ripening and particle size focusing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale. 2014;6(23):14523.

    CAS  Google Scholar 

  53. [53]

    Wei W, Zhang Y, Chen R, Goggi J, Ren N, Huang L, Bhakoo KK, Sun H, Tan TT. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem Mater. 2014;26(18):5183.

    CAS  Google Scholar 

  54. [54]

    Chen G, Qiu H, Fan R, Hao S, Tan S, Yang C, Han G. Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J Mater Chem. 2012;22(38):20190.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 11904323, 11874328 and 211902148) and the Certificate of Postdoctoral Research Grant in Henan Province (No. 1902014).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Cheng Zhang or Er-Jun Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3715 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zheng, GC., Hu, YM. et al. Insight into crystal growth and upconversion luminescence property of tetragonal Ba3Sc2F12 nanocrystals. Rare Met. 40, 113–122 (2021). https://doi.org/10.1007/s12598-020-01631-x

Download citation

Keywords

  • Ba3Sc2F12 nanocrystals
  • Crystal growth
  • Upconversion
  • Sc-based nanomaterials