Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors

Abstract

Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density, excellent cycle stability and environmental benignity. The performance of supercapacitors is definitively influenced by the electrode materials. Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application. However, the distribution of electrochemically active sites critically limits their electrochemical performance. Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates, enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials. This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor (EDLC)-based substances (e.g., graphene, hollow carbon) and pseudocapacitive materials (e.g., transition-metal oxides, sulfides, nitrides). Moreover, the corresponding electrochemical performances, reaction mechanisms, emerging challenges and future perspectives are briefly discussed and summarized.

Graphic abstract

This review presents the progress in the reasonable design and preparation of nickel sulfides and their applications in electrochemical capacitors. The corresponding electrochemical performances, reaction mechanisms, emerging challenges, and future perspectives are briefly discussed and summarized.

This is a preview of subscription content, access via your institution.

Fig. 1

(reproduced from Ref. [112], Copyright 2017 Springer Nature)

Fig. 2

(reproduced from Ref. [109], Copyright 2018 The Royal Society of Chemistry)

Fig. 3

(reproduced from Ref. [134]. Copyright 2015 Elsevier)

Fig. 4

(reproduced from Ref. [135], Copyright 2014 The Royal Society of Chemistry)

Fig. 5

(reproduced from Ref. [138], Copyright 2017 The Electrochemical Society)

Fig. 6

(reproduced from Ref. [146]. Copyright 2016 Springer Nature)

Fig. 7

(reproduced from Ref. [158], Copyright 2016 The Royal Society of Chemistry)

Fig. 8

(reproduced from Ref. [137], Copyright 2018 Elsevier)

Fig. 9

(reproduced from Ref. [163]. Copyright 2018 Elsevier)

References

  1. [1]

    Xu BL, Qi SH, Jin MM, Cai XY, Lai LF, Sun ZT, Han XG, Lin ZF, Shao H, Peng P, Xiang ZH, Elshof JE, Tan R, Liu C, Zhang ZX, Duan XC, Ma JM. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.

    CAS  Google Scholar 

  2. [2]

    Pham TN, Park D, Lee Y, Kim IT, Hur J, Oh Y-K, Lee Y-C. Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors. J Energy Chem. 2019;38:119.

    Google Scholar 

  3. [3]

    Zhou XL, Liu QR, Jiang CL, Ji BF, Ji XL, Tang YB, Cheng HM. Strategies towards low-cost dual-ion batteries with high performance. Angew Chem In Ed. 2019;58:2.

    Google Scholar 

  4. [4]

    Jamesh M-I. Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. J. Energy Chem. 2019;32:15.

    Google Scholar 

  5. [5]

    Yang CS, Gao KN, Zhang XP, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;37(6):459.

    CAS  Google Scholar 

  6. [6]

    Xiao L, Li EW, Yi JY, Meng W, Deng BH, Liu JP. Enhanced performance of solid-state Li-O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Met. 2018;37(6):527.

    CAS  Google Scholar 

  7. [7]

    Liu Y, Yao MJ, Zhang LL, Niu ZQ. Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. J Energy Chem. 2019;38:199.

    Google Scholar 

  8. [8]

    Li F, Liu QH, Hu JW, Feng YZ, He PB, Ma JM. Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale. 2019;11(33):15418.

    CAS  Google Scholar 

  9. [9]

    Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;37(11):929.

    CAS  Google Scholar 

  10. [10]

    Lu H, Chen Z, Du HL, Zhang K, Wang JL, Hou ZZ, Fang J. The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether. Ionics (Kiel). 2019;25(6):2685.

    CAS  Google Scholar 

  11. [11]

    Shen X, Cheng XB, Shi P, Huang JQ, Zhang XQ, Yan C, Li T, Zhang Q. Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J Energy Chem. 2019;37:29.

    Google Scholar 

  12. [12]

    Wu DX, Wang CY, Wu MG, Chao YF, He PB, Ma JM. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24.

    Google Scholar 

  13. [13]

    Yan ZH, Yang QW, Wang QH, Ma JM. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.

    CAS  Google Scholar 

  14. [14]

    Li HJ, Lu M, Han WJ, Li HB, Wu YC, Zhang W, Wang JC, Zhang BS. Employing MXene as a matrix for loading amorphous Si generated upon lithiation towards enhanced lithium-ion storage. J Energy Chem. 2019;32:15.

    Google Scholar 

  15. [15]

    Dong Y, Feng YZ, Deng JW, He PB, Ma JM. Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chin Chem Lett. 2020;31(3):909.

    CAS  Google Scholar 

  16. [16]

    Yuan CF, Wu C, Zhang Z, Hu GR. Evaluation of LiMn2O4-LiNi0.80Co0.15Al0.05O2 hybrid material as cathode in soft-packed lithium ion battery. Ionics (Kiel). 2017;23(3):567.

    CAS  Google Scholar 

  17. [17]

    Qi SH, Xu BL, Tiong VT, Hu J, Ma JM. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261.

    CAS  Google Scholar 

  18. [18]

    Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.

    CAS  Google Scholar 

  19. [19]

    Xu BL, Qi SH, He PB, Ma JM. Antimony- and bismuth- based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925.

    CAS  Google Scholar 

  20. [20]

    Etman AS, Sun JL, Younesi R. V2O5·nH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries. J Energy Chem. 2019;30:145.

    Google Scholar 

  21. [21]

    Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861.

    CAS  Google Scholar 

  22. [22]

    Xie DH, Zhang M, Wu Y, Xiang L, Tang YB. A Flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2020;30(5):1906770.

    CAS  Google Scholar 

  23. [23]

    Cai YS, Fang GZ, Zhou J, Liu SN, Luo ZG, Pan AQ, Cao GZ, Liang SQ. Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res. 2018;11(1):449.

    CAS  Google Scholar 

  24. [24]

    Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8:2618.

    CAS  Google Scholar 

  25. [25]

    Xu BL, Qi SH, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2019;31(1):217.

    Google Scholar 

  26. [26]

    Xie X, Qi SH, Wu DX, Wang HP, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.

    CAS  Google Scholar 

  27. [27]

    Qi SH, Xie X, Peng XW, Ng DHL, Wu MG, Liu QH, Yang JL, Ma JM. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys Status Solidi RRL. 2019;13(10):1900209.

    CAS  Google Scholar 

  28. [28]

    Chang XQ, Zhou XL, Ou XW, Lee CS, Zhou JW, Tang YB. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672.

    CAS  Google Scholar 

  29. [29]

    Xia C, Guo J, Lei YJ, Liang HF, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2018;30(5):1705580.

    Google Scholar 

  30. [30]

    Mo FN, Liang GJ, Meng QQ, Liu ZX, Li HF, Fan J, Zhi CY. A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ Sci. 2019;12(2):706.

    CAS  Google Scholar 

  31. [31]

    Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou ZF, Bai FQ, Zhang HX, Ma TY. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Energy Mater. 2017;7(13):1602420.

    Google Scholar 

  32. [32]

    Zhang ZJ, Zhou DB, Zhou L, Yu HZ, Huang BY. NiFe LDH-CoPc/CNTs as novel bifunctional electrocatalyst complex for zinc–air battery. Ionics (Kiel). 2018;24(6):1709.

    CAS  Google Scholar 

  33. [33]

    Wu MG, Xu BL, Zhang YF, Qi SH, Ni W, Hu J, Ma JM. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:122558.

    CAS  Google Scholar 

  34. [34]

    Liao JQ, Ni W, Wang CY, Ma JM. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2020;391:123489.

    CAS  Google Scholar 

  35. [35]

    Zhang D, Wang H, Chen G, Wan H, Zhang N, Liu XH, Ma RZ. Post-synthesis isomorphous substitution of layered Co–Mn hydroxide nanocones with graphene oxide as high-performance supercapacitor electrodes. Nanoscale. 2019;11(13):6165.

    CAS  Google Scholar 

  36. [36]

    Li HY, Guo H, Tong SC, Huang KQ, Zhang CJ, Wang XF, Zhang D, Chen XH, Yang JL. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing. J Phys D Appl Phys. 2019;52(11):115501.

    Google Scholar 

  37. [37]

    Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104(10):4245.

    CAS  Google Scholar 

  38. [38]

    Arbizzani C, Yu Y, Li J, Xiao J, Xia YY, Yang Y, Santato C, Raccichini R, Passerini S. Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources. J Power Sources. 2020;450:227636.

    Google Scholar 

  39. [39]

    Chhowalla M, Shin HS, Eda G, Li L, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263.

    Google Scholar 

  40. [40]

    Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai W, Paulo JF, Adam P, Robert MW, Katie AC, Matthias T, Dong S, Eric AS, Rodney SR. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.

    CAS  Google Scholar 

  41. [41]

    Tie D, Huang SF, Wang J, Ma J, Zhang JJ, Zhao YF. Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 2019;21:22.

    Google Scholar 

  42. [42]

    Wu MG, Ni W, Hu J, Ma JM. NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 2019;11(1):44.

    CAS  Google Scholar 

  43. [43]

    Wang L, Xie X, Dinh KN, Yan QY, Ma JM. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev. 2019;397:138.

    CAS  Google Scholar 

  44. [44]

    Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190.

    CAS  Google Scholar 

  45. [45]

    De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535.

    Google Scholar 

  46. [46]

    Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210.

    CAS  Google Scholar 

  47. [47]

    Yan J, Wang Q, Wei T, Fan ZG. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater. 2014;4(4):1300816.

    Google Scholar 

  48. [48]

    Wang F, Wu X, Yuan X, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46(22):6816.

    CAS  Google Scholar 

  49. [49]

    Li Q, Zheng SS, Xu YX, Xue HG, Pang H. Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J. 2018;333:505.

    CAS  Google Scholar 

  50. [50]

    Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D. Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A. 2017;5(25):12653.

    CAS  Google Scholar 

  51. [51]

    Feng DW, Lei T, Lukatskaya MR, Park JH, Huang ZH, Lee M, Shaw L, Chen SC, Yakovenko AA, Kulkarni A, Xiao JP, Fredrickson K, Tok JB, Zou XD, Bao ZN. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy. 2018;3(1):30.

    CAS  Google Scholar 

  52. [52]

    Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):1600539.

    Google Scholar 

  53. [53]

    Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Nam GH, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117(9):6225.

    CAS  Google Scholar 

  54. [54]

    Shao YL, El-Kady MF, Sun JY, Li YG, Zhang QH, Zhu MF, Wang HZ, Dunn B, Kaner RB. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118(18):9233.

    CAS  Google Scholar 

  55. [55]

    Yuan CZ, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem In Ed. 2014;53(6):1488.

    CAS  Google Scholar 

  56. [56]

    Faraji S, Ani FN. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J Power Sources. 2014;263:338.

    CAS  Google Scholar 

  57. [57]

    Cheng JP, Zhang J, Liu F. Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Adv. 2014;4(73):38893.

    CAS  Google Scholar 

  58. [58]

    Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater. 2018;8(3):1701592.

    Google Scholar 

  59. [59]

    Chandrasekaran S, Yao LB, Deng LB, Bowen C, Zhang Y, Chen SM, Lin ZQ, Peng F, Zhang PX. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev. 2019;48(15):4178.

    CAS  Google Scholar 

  60. [60]

    Deng XL, Jiang YQ, Wei ZX, Mao ML, Pothu R, Wang HX, Wang CY, Liu JP, Ma JM. Flexible quasi-solid-state dual-ion asymmetric supercapacitor based on Ni(OH)2 and Nb2O5 nanosheet arrays. Green Energy Environ. 2019;4(4):382.

    Google Scholar 

  61. [61]

    Fong KD, Wang T, Smoukov SK. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels. 2017;1(9):1857.

    CAS  Google Scholar 

  62. [62]

    Rajender B, Palaniappan S. Simultaneous oxidation and doping of aniline to polyaniline by oxidative template: electrochemical performance in supercapacitor. Int J Polym Mater Polym Biomater. 2015;64(18):939.

    CAS  Google Scholar 

  63. [63]

    Boddula R, Srinivasan P. Role of dual dopants in highly ordered crystalline polyaniline nanospheres: electrode materials in supercapacitors. J Appl Polym Sci. 2015;132(36):42510.

    Google Scholar 

  64. [64]

    Bolagam R, Boddula R, Srinivasan P. Synthesis of highly crystalline polyaniline with the use of (cyclohexylamino)-1-propanesulfonic acid for supercapacitor. J Appl Electrochem. 2015;45(1):51.

    CAS  Google Scholar 

  65. [65]

    Rajender B, Palaniappan S. Organic solvent soluble methyltriphenylphosphonium peroxodisulfate: a novel oxidant for the synthesis of polyaniline and the thus prepared polyaniline in high performance supercapacitors. New J Chem. 2015;39(7):5382.

    CAS  Google Scholar 

  66. [66]

    He JP, Guo C, Zhou SW, Zhao YL, Wang QP, Yang S, Yang JQ, Wang QH. Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors. Inorg Chem Front. 2018;6(1):226.

    Google Scholar 

  67. [67]

    Wang QH, Zhu YX, Xue J, Zhao XS, Guo ZP, Wang C. General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties. ACS Appl Mater Interfaces. 2016;8(27):17226.

    CAS  Google Scholar 

  68. [68]

    Wang QH, Du JL, Zhu YX, Yang JQ, Chen J, Wang C, Li L, Jiao LF. Facile fabrication and supercapacitive properties of mesoporous zinc cobaltite microspheres. J Power Sources. 2015;284:138.

    CAS  Google Scholar 

  69. [69]

    Wang QH, Zhu LX, Sun LQ, Liu YC, Jiao LF. Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J Mater Chem A. 2015;3(3):982.

    CAS  Google Scholar 

  70. [70]

    Rui XH, Tan HT, Yan QY. Nanostructured metal sulfides for energy storage. Nanoscale. 2014;6(17):9889.

    CAS  Google Scholar 

  71. [71]

    Kulkarni P, Nataraj SK, Balakrishna RG, Nagaraju DH, Reddy MV. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A. 2017;5(42):22040.

    CAS  Google Scholar 

  72. [72]

    Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT. Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J Mater Chem. 2012;22(40):21387.

    CAS  Google Scholar 

  73. [73]

    Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT. Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. CrystEngComm. 2011;13(23):6960.

    CAS  Google Scholar 

  74. [74]

    Wen XR, Zhao MQ, Zhang M, Fan X, Zhang DS. Efficient capacitive deionization of saline water by an integrated tin disulfide nanosheet@graphite paper electrode via an in situ growth strategy. ACS Sustain Chem Eng. 2020;8(2):1268.

    CAS  Google Scholar 

  75. [75]

    Han JL, Yan TT, Shen JJ, Shi LY, Zhang JP, Zhang DS. Capacitive deionization of saline water by using MoS2–graphene hybrid electrodes with high volumetric adsorption capacity. Environ Sci Technol. 2019;53(21):12668.

    CAS  Google Scholar 

  76. [76]

    Wang PT, Zhang X, Zhang J, Wan S, Guo SJ, Lu G, Yao JL, Huang XQ. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun. 2017;8:14580.

    CAS  Google Scholar 

  77. [77]

    Ye C, Zhang L, Guo CX, Li DD, Vasileff A, Wang HH, Qiao SZ. A 3D Hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv Funct Mater. 2017;27(33):1702524.

    Google Scholar 

  78. [78]

    Sun HC, Qin D, Huang SQ, Guo XZ, Li DM, Luo YH, Meng QB. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ Sci. 2011;4(8):2630.

    CAS  Google Scholar 

  79. [79]

    Zhao J, Li ZJ, Yuan XC, Shen T, Lin LG, Zhang M, Meng A, Li QD. Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co(OH)2 nanoparticles/Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chem Eng J. 2019;357:21.

    CAS  Google Scholar 

  80. [80]

    Chen FS, Wang H, Ji S, Linkov V, Wang RF. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J. 2018;345:48.

    CAS  Google Scholar 

  81. [81]

    Lin JH, Zheng XH, Wang YH, Liang HY, Jia HN, Qi JL, Cao J, Fei WD, Feng JC. Rational construction of core-shell Ni3S2@Ni(OH)2 nanostructures as battery-like electrodes for supercapacitors. Inorg Chem Front. 2018;5(8):1985.

    CAS  Google Scholar 

  82. [82]

    Wang HY, Liang MM, Duan D, Shi WY, Song YY, Sun ZB. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J. 2018;350:523.

    CAS  Google Scholar 

  83. [83]

    Dai SG, Zhao BT, Qu C, Chen DC, Dang D, Song B, deGlee BM, Fu JW, Hu CG, Wong CP, Liu ML. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy. 2017;33:522.

    CAS  Google Scholar 

  84. [84]

    Li YH, Cao LJ, Qiao LQ, Zhou M, Xiao P, Zhang YH. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A. 2014;2(18):6540.

    CAS  Google Scholar 

  85. [85]

    Naveenkumar P, Paruthimal Kalaignan G. Electrodeposited MnS on graphene wrapped Ni-Foam for enhanced supercapacitor applications. Electrochim Acta. 2018;289:437.

    CAS  Google Scholar 

  86. [86]

    Xing JL, Du J, Zhang X, Shao YB, Zhang T, Xu CL. A Ni-P@NiCo LDH core–shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalt Trans. 2017;46(30):10064.

    CAS  Google Scholar 

  87. [87]

    Sun HH, Ma Z, Qiu YF, Liu H, Gao GG. Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small. 2018;14(31):1800294.

    Google Scholar 

  88. [88]

    He Y, Zhuang X, Lei C, Lei L, Hou Y, Mai Y, Feng X. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today. 2019;24:103.

    CAS  Google Scholar 

  89. [89]

    Huang JQ, Wang ZY, Xu ZL, Chong XW, Qin XY, Wang XY, Kim JK. Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(42):28663.

    CAS  Google Scholar 

  90. [90]

    Ding YB, Tang YH, Yang LM, Zeng YX, Yuan JL, Liu T, Zhang SQ, Liu CB, Luo SG. Porous nitrogen-rich carbon materials from carbon self-repairing g-C3N4 assembled with graphene for high-performance supercapacitor. J Mater Chem A. 2016;4(37):14307.

    CAS  Google Scholar 

  91. [91]

    Zhang W, Jin XZ, Chai H, Diao GW, Piao YZ. 3D hybrids of interconnected porous carbon nanosheets/vertically aligned polyaniline nanowires for high-performance supercapacitors. Adv Mater Interfaces. 2018;5(11):1800106.

    Google Scholar 

  92. [92]

    Hooch Antink W, Choi Y, Seong KD, Kim JM, Piao Y. Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices. Adv Mater Interfaces. 2018;5(5):1701212.

    Google Scholar 

  93. [93]

    Chao YZ, Chen SB, Chen HQ, Hu XJ, Ma Y, Guo WS, Bai YX. Densely packed porous graphene film for high volumetric performance supercapacitor. Electrochim Acta. 2018;276:118.

    CAS  Google Scholar 

  94. [94]

    Kang Z, Li Y, Yu YS, Liao QL, Zhang Z, Guo HJ, Zhang SC, Wu J, Si HN, Zhang XM, Zhang Y. Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application. J Mater Sci. 2018;53(14):10292.

    CAS  Google Scholar 

  95. [95]

    Wang HF, Tang C, Wang B, Li BQ, Cui X, Zhang Q. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Mater. 2018;15:124.

    Google Scholar 

  96. [96]

    Shen F, Pankratov D, Chi QJ. Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr Opin Electrochem. 2017;4(1):133.

    CAS  Google Scholar 

  97. [97]

    Liu SH, Gordiichuk P, Wu ZS, Liu ZY, Wei W, Wagner M, Mohamed-Noriega N, Wu DQ, Mai YY, Herrmann A, Mullen K, Feng XL. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat Commun. 2015;6:8817.

    CAS  Google Scholar 

  98. [98]

    Zhao DP, Liu HQ, Wu X. Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M = Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy. 2019;57:363.

    CAS  Google Scholar 

  99. [99]

    Fan ZM, Zhu JP, Sun XH, Cheng ZJ, Liu YY, Wang YS. High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors. ACS Appl Mater Interfaces. 2017;9(26):21763.

    CAS  Google Scholar 

  100. [100]

    Sajedi-Moghaddam A, Mayorga-Martinez CC, Sofer Z, Bouša D, Saievar-Iranizad E, Pumera M. Black phosphorus nanoflakes/polyaniline hybrid material for high-performance pseudocapacitors. J Phys Chem C. 2017;121(37):20532.

    CAS  Google Scholar 

  101. [101]

    Yu HT, Xin GX, Ge X, Bulin C, Li RH, Xing RG, Zhang BW. Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance. Compos Sci Technol. 2018;154:76.

    CAS  Google Scholar 

  102. [102]

    Feng LD, Zhu YF, Ding HY, Ni CY. Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J Power Sources. 2014;267:430.

    CAS  Google Scholar 

  103. [103]

    Ye L, Zhao LJ, Zhang H, Pan Z, Gen S, Shi WH, Han B, Sun HM, Yang XJ, Xu TH. Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors. J Mater Chem A. 2017;5(4):1603.

    CAS  Google Scholar 

  104. [104]

    Wen J, Li SZ, Chen T, Yue Y, Liu NS, Gao YH, Li B, Song ZC, Chen Z, Guo YX, Xiong R, Fang GJ. Three-dimensional hierarchical NiCo hydroxide@Ni3S2 nanorod hybrid structure as high performance positive material for asymmetric supercapacitor. Electrochim Acta. 2016;222:965.

    CAS  Google Scholar 

  105. [105]

    Yang X, Zhao L, Lian J. Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J Power Sources. 2017;343:373.

    CAS  Google Scholar 

  106. [106]

    Sun CC, Ma MZ, Yang J, Zhang YF, Chen P, Huang W, Dong XC. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci Rep. 2015;4(1):7054.

    Google Scholar 

  107. [107]

    Harish S, Naveen AN, Abinaya R, Archana J, Ramesh R, Navaneethan M, Shimoura M, Hayakawa Y. Enhanced performance on capacity retention of hierarchical NiS hexagonal nanoplate for highly stable asymmetric supercapacitor. Electrochim Acta. 2018;283:1053.

    CAS  Google Scholar 

  108. [108]

    Hou LR, Yuan CZ, Li DK, Yang L, Shen LF, Zhang F, Zhang XG. Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors. Electrochim Acta. 2011;56(22):7454.

    CAS  Google Scholar 

  109. [109]

    Qu C, Zhang L, Meng W, Liang ZB, Dang D, Dai SG, Zhao BT, Tabassum H, Gao S, Zhang H, Guo WH, Zhao R, Huang XY, Liu ML, Zou RQ. MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. J Mater Chem A. 2018;6(9):4003.

    CAS  Google Scholar 

  110. [110]

    Luo WH, Zhang GF, Cui YX, Sun Y, Zhang J, Zheng WJ. One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4–MoS2 heterojunction electrodes for supercapacitors. J Mater Chem A. 2017;5(22):11278.

    CAS  Google Scholar 

  111. [111]

    Xu YL, Du WM, Du LL, Zhu WJ, Guo W, Chang JJ, Zhang B, Deng DH. Monocrystalline NiS nanowire arrays supported by Ni foam as binder-free electrodes with outstanding performances. RSC Adv. 2017;7(36):22553.

    CAS  Google Scholar 

  112. [112]

    Chen ZH, Zhao MG, Lv X, Zhou K, Jiang XQ, Ren XL, Mei XF. Fast ion transport through ultrathin shells of metal sulfide hollow nanocolloids used for high-performance energy storage. Sci Rep. 2018;8(1):30.

    Google Scholar 

  113. [113]

    Wang J, Ma KY, Zhang J, Liu F, Cheng JP. Template-free synthesis of hierarchical hollow NiSx microspheres for supercapacitor. J Colloid Interface Sci. 2017;507:290.

    CAS  Google Scholar 

  114. [114]

    Patil AM, Lokhande AC, Chodankar NR, Kumbhar VS, Lokhande CD. Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater Des. 2016;97:407.

    CAS  Google Scholar 

  115. [115]

    Yu XY, Yu L, Wu HB, Lou XW. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem In Ed. 2015;54(18):5331.

    CAS  Google Scholar 

  116. [116]

    You B, Sun YJ. Hierarchically porous nickel sulfide multifunctional superstructures. Adv Energy Mater. 2016;6(7):1502333.

    Google Scholar 

  117. [117]

    Guan B, Li Y, Yin BY, Wang DW, Zhang HH, Cheng CJ. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J. 2017;308:1165.

    CAS  Google Scholar 

  118. [118]

    Surendran S, Selvan RK. Growth and characterization of 3D flower-like β-NiS on carbon cloth: a dexterous and flexible multifunctional electrode for supercapattery and water-splitting applications. Adv Mater Interfaces. 2018;5(4):1701056.

    Google Scholar 

  119. [119]

    Du NX, Zheng WJ, Li XC, He HG, Wang L, Shi JH. Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem Eng J. 2017;323:415.

    CAS  Google Scholar 

  120. [120]

    Yang JQ, Guo W, Li D, Wei HM, Wu LY, Zheng WJ. Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. J Power Sources. 2014;268:113.

    CAS  Google Scholar 

  121. [121]

    Wang XH, Xia HY, Wang XQ, Shi B, Fang Y. A super high performance asymmetric supercapacitor based on Co3S4/NiS nanoplates electrodes. RSC Adv. 2016;6(100):97482.

    CAS  Google Scholar 

  122. [122]

    Theerthagiri J, Karuppasamy K, Durai G, Arunachalam P, Sangeetha K, Kuppusami P, Kim HS. Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review. Nanomaterials. 2018;8(4):256.

    Google Scholar 

  123. [123]

    AbdelHamid AA, Yang X, Yang J, Chen X, Ying JY. Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy. 2016;26:425.

    CAS  Google Scholar 

  124. [124]

    Singh A, Roberts AJ, Slade RCT, Chandra A. High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J Mater Chem A. 2014;2(39):16723.

    CAS  Google Scholar 

  125. [125]

    Liu T, Jiang CJ, Cheng B, You W, Yu JG. Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J Mater Chem A. 2017;5(40):21257.

    CAS  Google Scholar 

  126. [126]

    Xia W, Qu C, Liang ZB, Zhao BT, Dai SG, Qiu B, Jiao Y, Zhang QB, Huang XY, Guo WH, Dang D, Zou RQ, Xia DG, Liu ML. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 2017;17(5):2788.

    CAS  Google Scholar 

  127. [127]

    Bendi R, Kumar V, Bhavanasi V, Parida K, Lee PS. Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. Adv Energy Mater. 2016;6(3):1501833.

    Google Scholar 

  128. [128]

    Li Y, Ye K, Cheng K, Yin JL, Cao DX, Wang GL. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors. J Power Sources. 2015;274:943.

    CAS  Google Scholar 

  129. [129]

    Zhang YF, Zuo LZ, Zhang LS, Yan JL, Lu HY, Fan W, Liu TX. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016;9(9):2747.

    CAS  Google Scholar 

  130. [130]

    Lu M, Yuan XP, Guan XH, Wang GS. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J Mater Chem A. 2017;5(7):3621.

    CAS  Google Scholar 

  131. [131]

    Pi WB, Mei T, Li J, Wang JY, Li JH, Wang XB. Durian-like NiS2@rGO nanocomposites and their enhanced rate performance. Chem Eng J. 2018;335:275.

    CAS  Google Scholar 

  132. [132]

    Xie SL, Gou JX, Liu B, Liu CG. Synthesis of cobalt-doped nickel sulfide nanomaterials with rich edge sites as high-performance supercapacitor electrode materials. Inorg Chem Front. 2018;5(5):1218.

    CAS  Google Scholar 

  133. [133]

    Sun HH, Wang JG, Zhang XZ, Li CJ, Liu F, Zhu WJ, Li YY, Shao MH. Nanoconfined construction of MoS2@C/MoS2 core–sheath nanowires for superior rate and durable Li-ion energy storage. ACS Sustain Chem Eng. 2019;7(5):5346.

    CAS  Google Scholar 

  134. [134]

    Ruan YJ, Jiang JJ, Wan HZ, Ji X, Miao L, Peng L, Zhang B, Lv L, Liu J. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J Power Sources. 2016;301:122.

    CAS  Google Scholar 

  135. [135]

    Ni W, Wang B, Cheng JL, Li XD, Guan Q, Gu GF, Huang L. Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. Nanoscale. 2014;6(5):2618.

    CAS  Google Scholar 

  136. [136]

    Huang F, Yan AH, Sui YW, Qi JQ, Meng QK, He YZ. One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci: Mater Electron. 2017;28(17):12747.

    CAS  Google Scholar 

  137. [137]

    Qin SC, Yao TH, Guo X, Chen Q, Liu DQ, Liu QM, Li YL, Li JS, He DY. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities. Appl Surf Sci. 2018;440:741.

    CAS  Google Scholar 

  138. [138]

    Gou J. Ni2P/NiS2 composite with phase boundaries as high-performance electrode material for supercapacitor. J Electrochem Soc. 2017;164(13):A2956.

    CAS  Google Scholar 

  139. [139]

    Li XF, Shen JF, Li N, Ye MX. Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett. 2015;139:81.

    CAS  Google Scholar 

  140. [140]

    Ji Y, Liu W, Zhang ZQ, Wang XD, Li BX, Wang XF, Liu XY, Liu BB, Feng SH. Heterostructural MnO2@NiS2/Ni(OH)2 materials for high-performance pseudocapacitor electrodes. RSC Adv. 2017;7(70):44289.

    CAS  Google Scholar 

  141. [141]

    Wang M, Wang Y, Dou H, Wei G, Wang X. Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode. Ceram Int. 2016;42(8):9858.

    CAS  Google Scholar 

  142. [142]

    Zou X, Sun Q, Zhang YX, Li GD, Liu YP, Wu YY, Lan Y, Zou XX. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Sci Rep. 2018;8(1):4478.

    Google Scholar 

  143. [143]

    Li YH, Shi M, Wang L, Wang MR, Li J, Cui HT. Tailoring synthesis of Ni3S2 nanosheets with high electrochemical performance by electrodeposition. Adv Powder Technol. 2018;29(5):1092.

    CAS  Google Scholar 

  144. [144]

    Chen C, Zhou JJ, Li YL, Li Q, Chen HM, Tao K, Han L. NiCo2S4@Ni3S2 hybrid nanoarray on Ni foam for high-performance supercapacitors. New J Chem. 2019;43(19):7344.

    CAS  Google Scholar 

  145. [145]

    Wen J, Li SZ, Zhou K, Song ZC, Li B, Chen Z, Chen T, Guo YX, Fang GJ. Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J Power Sources. 2016;324:325.

    CAS  Google Scholar 

  146. [146]

    Xiong X, Zhao B, Ding D, Chen DC, Yang CH, Lei Y, Liu ML. One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Mater. 2016;8(8):e300.

    Google Scholar 

  147. [147]

    Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J. 2014;251:116.

    CAS  Google Scholar 

  148. [148]

    Chou SW, Lin JY. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc. 2013;160(4):D178.

    CAS  Google Scholar 

  149. [149]

    Huo HH, Zhao YQ, Xu CL. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A. 2014;2(36):15111.

    CAS  Google Scholar 

  150. [150]

    Chou SW, Lin JY. Pulse-reversal deposition of nickel sulfide thin film as an efficient cathode material for hybrid supercapacitors. J Electrochem Soc. 2015;162(14):A2762.

    CAS  Google Scholar 

  151. [151]

    Li TT, Zuo YP, Lei XM, Li N, Liu J, Han HY. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. J Mater Chem A. 2016;4(21):8029.

    CAS  Google Scholar 

  152. [152]

    Dhaiveegan P, Hsu YK, Tsai YH, Hsieh CK, Lin JY. Pulse-reversal deposition of Ni3S2 thin films on carbon fiber cloths for supercapacitors. Surf Coat Technol. 2018;350:1003.

    CAS  Google Scholar 

  153. [153]

    Niu SF, Zheng JH. Mo2S3@Ni3S2 nanowries on nickel foam as a highly-stable supercapacitor material. J Alloys Compd. 2018;737:809.

    CAS  Google Scholar 

  154. [154]

    Zhong XW, Zhang LF, Tang J, Chai JW, Xu JC, Cao LJ, Yang MY, Yang M, Kong WG, Wang SJ, Cheng H, Lu ZG, Cheng C, Xu BM, Pan H. Efficient coupling of a hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. J Mater Chem A. 2017;5(34):17954.

    CAS  Google Scholar 

  155. [155]

    Han T, Jiang LY, Jiu HF, Chang JX. Hydrothermal synthesis of the clustered network-like Ni3S2-Co9S8 with enhanced electrochemical behavior for supercapacitor electrode. J Phys Chem Solids. 2017;110:1.

    CAS  Google Scholar 

  156. [156]

    Zhang JF, Lin JM, Wu JH, Xu R, Lai M, Gong C, Chen X, Zhou P. Excellent electrochemical performance hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for asymmetric supercapacitors. Electrochim Acta. 2016;207:87.

    CAS  Google Scholar 

  157. [157]

    He WD, Wang CG, Li HQ, Deng XL, Xu XJ, Zhai TY. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater. 2017;7(21):1700983.

    Google Scholar 

  158. [158]

    Liu B, Kong DZ, Huang ZX, Mo RW, Wang Y, Han ZJ, Cheng CW, Yang HY. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale. 2016;8(20):10686.

    CAS  Google Scholar 

  159. [159]

    Long B, Balogun MS, Luo L, Qiu WT, Luo Y, Song SQ, Tong YX. Phase boundary derived pseudocapacitance enhanced nickel-based composites for electrochemical energy storage devices. Adv Energy Mater. 2018;8(5):1701681.

    Google Scholar 

  160. [160]

    Li LQ, Yang HB, Yang J, Zhang LP, Miao JW, Zhang YF, Sun CC, Huang W, Dong XC, Liu B. Hierarchical carbon@Ni3S2@MoS2 double core-shell nanorods for high-performance supercapacitors. J Mater Chem A. 2016;4(4):1319.

    CAS  Google Scholar 

  161. [161]

    Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci. 2013;6(7):2216.

    CAS  Google Scholar 

  162. [162]

    Ji FZ, Jiang D, Chen XM, Pan XX, Kuang LP, Zhang Y, Alameh K, Ding BF. Simple in situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors. Appl Surf Sci. 2017;399:432.

    CAS  Google Scholar 

  163. [163]

    Cheng LL, Hu YY, Ling L, Qiao DD, Cui SC, Jiao Z. One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@Ni3S4 core/shell submicrospheres for high-performance supercapacitors. Electrochim Acta. 2018;283:664.

    CAS  Google Scholar 

  164. [164]

    Zhang Y, Sun WP, Rui XH, Li HT, Guo GL, Madhavi S, Zong Y, Yan QY. One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small. 2015;11(30):3694.

    CAS  Google Scholar 

  165. [165]

    Wang LN, Liu JJ, Zhang LL, Dai BS, Xu M, Ji MW, Zhao XS, Cao CH, Zhang JT, Zhu H. Rigid three-dimensional Ni3S4 nanosheet frames: controlled synthesis and their enhanced electrochemical performance. RSC Adv. 2015;5(11):8422.

    CAS  Google Scholar 

  166. [166]

    Huang F, Sui YW, Wei FX, Qi JQ, Meng QK, He YZ. Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Sci: Mater Electron. 2018;29(3):2525.

    CAS  Google Scholar 

  167. [167]

    Duan XC, Xu JT, Wei ZX, Ma JM, Guo SJ, Liu HK, Dou SX. Atomically thin transition-metal dichalcogenides for electrocatalysis and energy storage. Small Methods. 2017;1(11):1700156.

    Google Scholar 

  168. [168]

    Huang JD, Wei ZX, Liao JJ, Ni W, Wang CY, Ma JM. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J Energy Chem. 2019;33:100.

    Google Scholar 

  169. [169]

    Wei ZX, Wang L, Zhuo M, Ni W, Wang HX, Ma JM. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A. 2018;6(26):12185.

    CAS  Google Scholar 

  170. [170]

    Xue XG, Penn RL, Leite ER, Huang F, Lin Z. Crystal growth by oriented attachment: kinetic models and control factors. CrystEngComm. 2014;16(8):1419.

    CAS  Google Scholar 

  171. [171]

    Gou JX, Xie SL, Yang ZC, Liu YQ, Chen YJ, Liu YR, Liu CG. A high-performance supercapacitor electrode material based on NiS/Ni3S4 composite. Electrochim Acta. 2017;229:299.

    CAS  Google Scholar 

  172. [172]

    Zhang Q, Peng G, Mwizerwa JP, Wan HL, Cai LT, Xu XX, Yao XY. Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. J Mater Chem A. 2018;6(25):12098.

    CAS  Google Scholar 

  173. [173]

    Tomiyasu H, Shikata H, Takao K, Asanuma N, Taruta S, Park YY. An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep. 2017;7(1):45048.

    CAS  Google Scholar 

  174. [174]

    Baptista JM, Sagu JS, Kg UW, Lobato K. State-of-the-art materials for high power and high energy supercapacitors: performance metrics and obstacles for the transition from lab to industrial scale—a critical approach. Chem Eng J. 2019;374:1153.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51302079, 51702138 and 51403193), the Natural Science Foundation of Hunan Province (No. 2017JJ1008) and the Key Research and Development Program of Hunan Province of China (No. 2018GK2031).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qing-Hong Wang or Wei Ni or Jian-Min Ma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pothu, R., Bolagam, R., Wang, QH. et al. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 40, 353–373 (2021). https://doi.org/10.1007/s12598-020-01470-w

Download citation

Keywords

  • Supercapacitors
  • Nickel sulfides
  • Hybrid structures
  • Energy storage materials
  • Pseudocapacitance