Enhanced thermoelectric performance of ternary compound Cu3PSe4 by defect engineering


The diamond-like compound Cu3PSe4 with low lattice thermal conductivity is deemed to be a promising thermoelectric material, which can directly convert waste heat into electricity or vice versa with no moving parts and greenhouse emissions. However, its performance is limited by its low electrical conductivity. In this study, we report an effective method to enhance thermoelectric performance of Cu3PSe4 by defect engineering. It is found that the carrier concentrations of Cu3−xPSe4 (x = 0, 0.03, 0.06, 0.09, 0.12) compounds are increased by two orders of magnitude as x > 0.03, from 1 × 1017 to 1 × 1019 cm−3. Combined with the intrinsically low lattice thermal conductivities and enhanced electrical transport performance, a maximum zT value of 0.62 is obtained at 727 K for x = 0.12 sample, revealing that Cu defect regulation can be an effective method for enhancing thermoelectric performance of Cu3PSe4.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. [1]

    Zhou X, Yan Y, Lu X, Zhu H, Han X, Chen G, Ren Z. Routes for high-performance thermoelectric materials. Mater Today. 2018;21(9):974.

    CAS  Article  Google Scholar 

  2. [2]

    Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.

    CAS  Article  Google Scholar 

  3. [3]

    Goldsmid HJ, Nolas GS. In A Review of the New Thermoelectric Materials, Ict 20 International Conference on Thermoelectrics, Beijing. 2001. 1.

  4. [4]

    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    CAS  Article  Google Scholar 

  5. [5]

    Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 2011;31(3):188.

    Article  Google Scholar 

  6. [6]

    Peng K, Zhang B, Wu H, Cao X, Li A, Yang D, Lu X, Wang G, Han X, Uher C. Ultra-high average figure of merit in synergistic band engineered SnxNa1−xSe0.9S0.1 single crystals. Mater Today. 2018;21(5):501.

    CAS  Article  Google Scholar 

  7. [7]

    Zhang SS, Yang DF, Shaheen N, Shen XC, Xie DD, Yan YC, Lu X, Zhou XY. Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Met. 2018;37(4):326.

    CAS  Article  Google Scholar 

  8. [8]

    Chen Z, Zhang X, Pei Y. Manipulation of phonon transport in thermoelectrics. Adv Mater. 2018;30(17):e1705617.

    Article  Google Scholar 

  9. [9]

    Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373.

    CAS  Article  Google Scholar 

  10. [10]

    Mao J, Shuai J, Song S, Wu Y, Dally R, Zhou J, Liu Z, Sun J, Zhang Q, Dela Cruz C. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc Natl Acad Sci. 2017;114(40):10548.

    CAS  Article  Google Scholar 

  11. [11]

    Li Z, Xiao C, Fan S, Deng Y, Zhang W, Ye B, Xie Y. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J Am Chem Soc. 2015;137(20):6587.

    CAS  Article  Google Scholar 

  12. [12]

    Yao Z, Li W, Tang J, Chen Z, Lin S, Biswas K, Burkov A, Pei Y. Solute manipulation enabled band and defect engineering for thermoelectric enhancements of SnTe. InfoMat. 2019;1(4):571.

    Article  Google Scholar 

  13. [13]

    Tang J, Yao Z, Chen Z, Lin S, Zhang X, Xiong F, Li W, Chen Y, Pei Y. Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Mater Today Phys. 2019;9:100091.

    Article  Google Scholar 

  14. [14]

    Wang X, Li W, Zhou B, Sun C, Zheng L, Tang J, Shi X, Pei Y. Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. Mater Today Phys. 2019;8:123.

    CAS  Article  Google Scholar 

  15. [15]

    Shi X, Xi L, Fan J, Zhang W, Chen L. Cu–Se bond network and thermoelectric compounds with complex diamondlike structure. Chem Mater. 2010;22(22):6029.

    CAS  Article  Google Scholar 

  16. [16]

    Zhang A, Chen Q, Yao W, Yang D, Wang G, Zhou X. Large-scale colloidal synthesis of co-doped Cu2SnSe3 nanocrystals for thermoelectric applications. J Electron Mater. 2016;45(3):1935.

    CAS  Article  Google Scholar 

  17. [17]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem Commun. 2012;48(32):3818.

    CAS  Article  Google Scholar 

  18. [18]

    Cho J, Shi X, Salvador JR, Meisner GP, Yang J, Wang H, Wereszczak AA, Zhou X, Uher C. Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3. Phys RevB. 2011;84(8):085207.

    Article  Google Scholar 

  19. [19]

    Zhang H, Li JT, Ding FZ, Qu F, Li H, Gu HW. Combustion synthesis of ZrNiSn half-Heusler thermoelectric materials%. Chin J Rare Met. 2019;043(4):337.

    Google Scholar 

  20. [20]

    Qiu W, Wu L, Ke X, Yang J, Zhang W. Diverse lattice dynamics in ternary Cu–Sb–Se compounds. Sci Rep. 2015;5:13643.

    Article  Google Scholar 

  21. [21]

    Wang G, Yu D, Guo L, Yang D, Hu C, Peng K, Zhang Q, Tang X, Wang G, Zhou X. Rapid fabrication of CuInSbxTe2–x (0 ≤ x ≤ 0.10) compounds and their thermoelectric performance. Sci Adv Mater. 2015;7(12):2672.

    CAS  Article  Google Scholar 

  22. [22]

    Qiu P, Shi X, Chen L. Cu-based thermoelectric materials. Energy Storage Mater. 2016;3:85.

    Article  Google Scholar 

  23. [23]

    Foster D, Jieratum V, Kykyneshi R, Keszler D, Schneider G. Electronic and optical properties of potential solar absorber Cu3PSe4. Appl Phys Lett. 2011;99(18):181903.

    Article  Google Scholar 

  24. [24]

    Foster D, Barras F, Vielma J, Schneider G. Defect physics and electronic properties of Cu3PSe4 from first principles. Phys Rev B. 2013;88(19):195201.

    Article  Google Scholar 

  25. [25]

    Pfitzner A, Reiser S. Refinement of the crystal structures of Cu3PS4 and Cu3SbS4 and a comment on normal tetrahedral structures. Z für Kristallographie-Cryst Mater. 2002;217(2):51.

    CAS  Google Scholar 

  26. [26]

    Skoug EJ, Cain JD, Morelli DT, Kirkham M, Majsztrik P, Lara-Curzio E. Lattice thermal conductivity of the Cu3SbSe4-Cu3SbS4 solid solution. J Appl Phys. 2011;110(2):023501.

    Article  Google Scholar 

  27. [27]

    Li Y, Zhang T, Qin Y, Day T, Jeffrey Snyder G, Shi X, Chen L. Thermoelectric transport properties of diamond-like Cu1−xFe1+xS2 tetrahedral compounds. J Appl Phys. 2014;116(20):203705.

    Article  Google Scholar 

  28. [28]

    Shen X, Yang CC, Liu Y, Wang G, Tan H, Tung YH, Wang G, Lu X, He J, Zhou X. High-temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Appl Mater Interfaces. 2018;11(2):2168.

    Article  Google Scholar 

  29. [29]

    Shen X, Xia Y, Wang G, Zhou F, Ozolins V, Lu X, Wang G, Zhou X. High thermoelectric performance in complex phosphides enabled by stereochemically active lone pair electrons. J Mater Chem A. 2018;6(48):24877.

    CAS  Article  Google Scholar 

  30. [30]

    Shuai J, Mao J, Song S, Zhu Q, Sun J, Wang Y, He R, Zhou J, Chen G, Singh DJ, Ren Z. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy Environ Sci. 2017;10(3):799.

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the Graduate Scientific Research and Innovation Foundation of Chongqing, China (No. CYB 19064), the Project for Fundamental and Frontier Research in Chongqing (No. CSTC2017JCYJAX0388), Shenzhen Science and Technology Innovation Committee (No. JCYJ20170818155752559), the National Natural Science Foundation of China (Nos. 51772035, 11674040 and 51472036) and the Fundamental Research Funds for the Central Universities (No. 106112017CDJQJ308821). We would like to thank the Analytical and Testing Center of Chongqing University for the assistance with the Hall measurements.

Author information



Corresponding authors

Correspondence to Xu Lu or Xiao-Yuan Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shen, X., Yan, Y. et al. Enhanced thermoelectric performance of ternary compound Cu3PSe4 by defect engineering. Rare Met. (2020). https://doi.org/10.1007/s12598-020-01468-4

Download citation


  • Cu3PSe4
  • Thermal conductivity
  • Defect engineering
  • Electrical conductivity
  • Thermoelectric performance