Recent progresses on alloy-based anodes for potassium-ion batteries

Abstract

Potassium-ion batteries (KIBs) are one of the most promising large-scale electric energy storage systems due to the high abundance and low redox potential of K. As the key component, anode determines their energy density and safety. Alloy-based anodes, such as P, Sn, Sb, and Bi, have attracted extensive attention due to their abundant resources, suitable working potentials, and large theoretical capacities. However, the dramatic volume variation upon (de)potassiation results in pulverization of particles and their detaching from the current collector accompanied with performance decay. Various strategies, including designing micro-/nanostructures, introducing carbon substrates, and optimizing electrode/electrolyte interface, have been demonstrated to effectively alleviate these issues. Herein, we summarize the recent research progresses on alloy-based materials in KIBs. The synthesis methods, electrochemical performance, reaction mechanisms, and structure–activity relationships of these materials are considered, and challenges and perspectives are provided. This review provides new insight into designing of high-activity electrode materials for KIBs and beyond.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(reprinted with permission [89], Copyright 2019 Royal Society of Chemistry)

Fig. 8

(reprinted with permission [41], Copyright 2018 John Wiley and Sons)

Fig. 9

(reprinted with permission [41], Copyright 2018 John Wiley and Sons)

Fig. 10

References

  1. [1]

    Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.

    Google Scholar 

  2. [2]

    Liu T, Zhao SX, Gou LL, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189.

    CAS  Google Scholar 

  3. [3]

    Zhang J, Cheng F, Chou S, Wang J, Gu L, Wang H, Yoshikawa H, Lu Y, Chen J. Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathode by modulating cation arrangement. Adv Mater. 2019;31(42):1901808.

    CAS  Google Scholar 

  4. [4]

    Mu C, Lei K, Li H, Li F, Chen J. Enhanced conductivity and structure stability of Ti4+ doped Li3VO4 as anodes for lithium-ion batteries. J Phys Chem C. 2017;121(47):26196.

    Google Scholar 

  5. [5]

    Hu Z, Tai Z, Liu Q, Wang S, Jin H, Wang S, Lai W, Chen M, Li L, Chen L, Tao Z, Chou S. Ultrathin 2D TiS2 nanosheets for high capacity and long-life sodium ion batteries. Adv Energy Mater. 2019;9(8):1803210.

    Google Scholar 

  6. [6]

    Wang S, Jing Y, Han L, Wang H, Wu S, Zhang Y, Wang L, Zhang K, Kang Y, Cheng F. Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorg Chem Front. 2019;6(2):459.

    CAS  Google Scholar 

  7. [7]

    Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater. 2013;23(8):947.

    CAS  Google Scholar 

  8. [8]

    Wang PF, You Y, Yin YX, Guo YG. Layered oxide cathode for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater. 2018;8(8):1701912.

    Google Scholar 

  9. [9]

    Vaalma C, Giffin GA, Buchholz D, Passerini S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc. 2016;163(7):A1295.

    CAS  Google Scholar 

  10. [10]

    Chen Y, Luo W, Carter M, Zhou L, Dai J, Fu K, Lacey S, Li T, Wan J, Han X, Bao Y, Hu L. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy. 2015;18:205.

    CAS  Google Scholar 

  11. [11]

    Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618.

    CAS  Google Scholar 

  12. [12]

    Jian Z, Xing Z, Bommier C, Li Z, Ji X. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater. 2016;6(3):1501874.

    Google Scholar 

  13. [13]

    Chen M, Liu Q, Wang S, Wang E, Guo X, Chou S. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies. Adv Energy Mater. 2019;9(14):1803609.

    Google Scholar 

  14. [14]

    Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.

    CAS  Google Scholar 

  15. [15]

    Eftekhari A, Jian Z, Ji X. Potassium secondary batteries. ACS Appl Mater Interfaces. 2017;9(5):4404.

    CAS  Google Scholar 

  16. [16]

    Wu X, Leonard DP, Ji X. Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater. 2017;29(12):5031.

    CAS  Google Scholar 

  17. [17]

    Matsuura N, Umemoto K, Takeuchi Z. Standard potentials of alkali metals, sliver, and thallium metal/ion couples in N, N′-dimethylformamide, dimethyl sulfoxide, and propylene carbonate. Bull Chem Soc Jpn. 1974;47(4):813.

    CAS  Google Scholar 

  18. [18]

    Zhao J, Zou X, Zhu Y, Xu Y, Wang C. Electrochemical intercalation of potassium into graphite. Adv Funct Mater. 2016;26(44):8103.

    CAS  Google Scholar 

  19. [19]

    Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv. 2019;5(5):eaav7412.

    Google Scholar 

  20. [20]

    Hosaka T, Shimamura T, Kubota K, Komaba S. Polyanionic compounds for potassium-ion batteries. Chem Rec. 2019;19(4):735.

    CAS  Google Scholar 

  21. [21]

    Lei K, Li F, Mu C, Wang J, Zhao Q, Chen C, Chen J. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ Sci. 2017;10(2):552.

    CAS  Google Scholar 

  22. [22]

    Zhou J, Wang L, Yang M, Wu J, Chen F, Huang W, Han N, Ye H, Zhao F, Li Y, Li Y. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv Mater. 2017;29(35):1702061.

    Google Scholar 

  23. [23]

    Zou X, Xiong P, Zhao J, Hu J, Liu Z, Xu Y. Recent research progress in non-aqueous potassium-ion batteries. Phys Chem Chem Phys. 2017;19(39):26495.

    CAS  Google Scholar 

  24. [24]

    Xie X, Qi S, Wu D, Wang H, Li F, Peng X, Cai J, Liang J, Ma J. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.

    CAS  Google Scholar 

  25. [25]

    Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc. 2017;137(36):11566.

    Google Scholar 

  26. [26]

    Kishore B, Venkatesh G, Munichandraiah N. K4Ti4O9: a promising anode material for potassium-ion batteries. J Electrochem Soc. 2016;163(13):A2551.

    CAS  Google Scholar 

  27. [27]

    Han J, Xu M, Niu Y, Li G-N, Wang M, Zhang Y, Jia M, Li CM. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem Commun. 2016;52(75):11274.

    CAS  Google Scholar 

  28. [28]

    Schuppert ND, Mukherjee S, Bates AM, Son EJ, Choi MJ, Park S. Ex-situ X-ray diffraction analysis of electrode strain at TiO2 atomic layer deposition/α-MoO3 interface in a novel aqueous potassium-ion battery. J Power Sources. 2016;316:160.

    CAS  Google Scholar 

  29. [29]

    Gao H, Zhou T, Zheng Y, Zhang Q, Liu Y, Chen J, Liu H, Guo Z. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv Funct Mater. 2017;27(43):1702634.

    Google Scholar 

  30. [30]

    Xie J, Zhu Y, Zhuang N, Li X, Yuan X, Li J, Hong G, Mai W. High-concentration ether-based electrolyte boosting electrochemical performance of SnS2-reduced graphene oxide for K-ion batteries. J Mater Chem A. 2019;7(33):19332.

    CAS  Google Scholar 

  31. [31]

    Ren X, Zhao Q, McCulloch WD, Wu Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017;10(4):1313.

    CAS  Google Scholar 

  32. [32]

    Lakshmi V, Chen Y, Mikhaylov AA, Medvedev AG, Sultana I, Rahman MM, Lev O, Prikhodchenko PV, Glushenkov AM. Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem Commun. 2017;53(59):8272.

    CAS  Google Scholar 

  33. [33]

    Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater. 2016;26(6):911.

    CAS  Google Scholar 

  34. [34]

    Deng Q, Pei J, Fan C, Ma J, Cao B, Li C, Jin Y, Wang L, Li J. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy. 2017;33:350.

    CAS  Google Scholar 

  35. [35]

    Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, Chen J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed. 2018;57(30):9443.

    CAS  Google Scholar 

  36. [36]

    Liang Y, Luo C, Wang F, Hou S, Liou SC, Qing T, Li Q, Zheng J, Cui C, Wang C. An organic anode for high temperature potassium-ion batteries. Adv Energy Mater. 2018;9(2):1802986.

    Google Scholar 

  37. [37]

    Luo Y, Liu Y, Lei K, Shi J, Xu G, Li F, Chen J. A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem Sci. 2019;10(7):2048.

    CAS  Google Scholar 

  38. [38]

    Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):1703857.

    Google Scholar 

  39. [39]

    Wu Y, Huang HB, Feng Y, Wu ZS, Yu Y. The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries. Adv Mater. 2019;31(50):1901414.

    CAS  Google Scholar 

  40. [40]

    Wang Z, Dong K, Wang D, Luo S, Liu X, Liu Y, Wang Q, Zhao Y, Hao A, He C, Shi C, Zhao N. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. Chem Eng J. 2020;384:123327.

    CAS  Google Scholar 

  41. [41]

    Lei K, Wang C, Liu L, Luo Y, Mu C, Li F, Chen J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed. 2018;57(17):4687.

    CAS  Google Scholar 

  42. [42]

    Zhang Q, Mao J, Pang WK, Zheng T, Sencadas V, Chen Y, Liu Y, Guo Z. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater. 2018;8(15):1703288.

    Google Scholar 

  43. [43]

    Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries. Chemsuschem. 2018;11(19):3376.

    CAS  Google Scholar 

  44. [44]

    Allan PK, Griffin JM, Darwiche A, Borkiewicz OJ, Wiaderek KM, Chapman KW, Morris AJ, Chupas PJ, Monconduit L, Grey CP. Tracking sodium–antimonide phase transformation in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state NMR spectroscopy. J Am Chem Soc. 2016;138(7):2352.

    CAS  Google Scholar 

  45. [45]

    Lin L, Xu X, Chu C, Majeed MK, Yang J. Mesoporous amorphous silicon: a simple synthesis of a high-rate and long-life anode material for lithium-ion batteries. Angew Chem Int Ed. 2016;55(45):14063.

    CAS  Google Scholar 

  46. [46]

    Zong L, Jin Y, Liu C, Zhu B, Hu X, Lu Z, Zhu J. Precise perforation and scalable production of Si particles from low-grade sources for high-performance lithium ion battery anodes. Nano Lett. 2016;16(11):7210.

    CAS  Google Scholar 

  47. [47]

    Li T, Yang JY, Lu SG, Wang H, Ding HY. Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries. Rare Met. 2013;32(3):299.

    CAS  Google Scholar 

  48. [48]

    Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    CAS  Google Scholar 

  49. [49]

    An YB, Chen S, Zou MM, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.

    CAS  Google Scholar 

  50. [50]

    Sangster J. K–Si (potassium–silicon) system. J Phase Equilib Diffus. 2006;27(2):190.

    CAS  Google Scholar 

  51. [51]

    Tran TT, Obrovac MN. Alloy negative electrodes for high energy density metal-ion cell. J Electrochem Soc. 2011;158(12):A1411.

    CAS  Google Scholar 

  52. [52]

    Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 2019. https://doi.org/10.1002/smll.201903194.

    Article  Google Scholar 

  53. [53]

    Sohn HJ, Park CM. Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater. 2007;19(18):2465.

    Google Scholar 

  54. [54]

    Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater. 2013;25(22):3045.

    CAS  Google Scholar 

  55. [55]

    Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou SC, Wang C. Red phosphorous-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano. 2015;9(3):3254.

    CAS  Google Scholar 

  56. [56]

    Sun J, Lee HW, Pasta M, Sun Y, Liu W, Li Y, Lee HR, Liu N, Cui Y. Carbothermic reduction synthesis of red phosphorous-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater. 2016;4:130.

    Google Scholar 

  57. [57]

    Sangster JM. K–P (potassium–phosphorus) system. J Phase Equilib Diffus. 2010;31(1):68.

    CAS  Google Scholar 

  58. [58]

    Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc. 2017;139(9):3316.

    CAS  Google Scholar 

  59. [59]

    Yang W, Lu Y, Zhao C, Liu H. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett. 2019;16(1):89.

    CAS  Google Scholar 

  60. [60]

    Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A. 2017;5(45):23506.

    CAS  Google Scholar 

  61. [61]

    Zhang W, Wu Z, Zhang J, Liu G, Yang N-H, Liu R-S, Pang WK, Li W, Guo Z. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy. 2018;53:967.

    CAS  Google Scholar 

  62. [62]

    Mu L, Feng X, Kou R, Zhang Y, Guo H, Tian C, Sun CJ, Du XW, Nordlund D, Xin HL, Lin F. Deciphering the cathode–electrolyte interfacial chemistry in sodium layered cathode materials. Adv Energy Mater. 2018;8(34):1801975.

    Google Scholar 

  63. [63]

    Chang WC, Wu JH, Chen KT, Tuan HY. Red phosphorus potassium-ion battery anodes. Adv Sci. 2019;6(9):1801354.

    Google Scholar 

  64. [64]

    Xiong P, Bai P, Tu S, Cheng M, Zhang J, Sun J, Xu Y. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anode. Small. 2018;14(33):1802140.

    Google Scholar 

  65. [65]

    Liu D, Huang X, Qu D, Zheng D, Wang G, Harris J, Si J, Ding T, Chen J, Qu D. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy. 2018;52:1.

    CAS  Google Scholar 

  66. [66]

    Wu Y, Hu S, Xu R, Wang J, Peng Z, Zhang Q, Yu Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019;19(2):1351.

    Google Scholar 

  67. [67]

    Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F, Chen J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014;14(1):153.

    CAS  Google Scholar 

  68. [68]

    Yu Y, Gu L, Zhu C, Aken PAV, Maier J. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc. 2009;131(44):15984.

    CAS  Google Scholar 

  69. [69]

    Zhao M, Zhao Q, Qiu J, Xue H, Pang H. Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 2016;6(98):95449.

    CAS  Google Scholar 

  70. [70]

    Liu Y, Zhang N, Jiao L, Chen J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater. 2015;27(42):6702.

    CAS  Google Scholar 

  71. [71]

    Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.

    CAS  Google Scholar 

  72. [72]

    Li Z, Ding J, Mitlin D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res. 2015;48(6):1657.

    CAS  Google Scholar 

  73. [73]

    Chevier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011.

    Google Scholar 

  74. [74]

    Kamali AR, Fray DJ. Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci. 2011;27(1):14.

    CAS  Google Scholar 

  75. [75]

    Han X, Liu Y, Jia Z, Chen YC, Wu J, Weadock N, Gaskell KJ, Li T, Hu L. Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett. 2014;14(1):139.

    CAS  Google Scholar 

  76. [76]

    Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun. 2016;52(59):9279.

    CAS  Google Scholar 

  77. [77]

    Ramireddy T, Kali R, Jangid MK, Srihari V, Poswal HK, Mukhopadhydy A. Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc. 2017;164(12):A2360.

    CAS  Google Scholar 

  78. [78]

    Hassoun J, Panero PRS. The role of the interface of tin electrodes in lithium cells: an impedance study. J Power Sources. 2007;174(1):321.

    CAS  Google Scholar 

  79. [79]

    Yan Z, Niu XY, Du XQ, Wang QC, Wu XJ, Zhou YN. Activating AlN thin film by introducing Co nanoparticles as a new anode material for thin-film lithium batteries. Rare Met. 2018;37(8):625.

    CAS  Google Scholar 

  80. [80]

    Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.

    CAS  Google Scholar 

  81. [81]

    Wang Q, Zhao X, Ni C, Tian H, Li J, Zhang Z, Mao SX, Wang J, Xu Y. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C. 2017;121(23):12652.

    CAS  Google Scholar 

  82. [82]

    Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev. 2010;39(8):3115.

    CAS  Google Scholar 

  83. [83]

    Yang Q, Zhou J, Zhang G, Guo C, Li M, Zhu Y, Qian Y. Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. J Mater Chem A. 2017;5(24):12144.

    CAS  Google Scholar 

  84. [84]

    Darwiche A, Marion C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805.

    CAS  Google Scholar 

  85. [85]

    Wang N, Bai Z, Qian Y, Yang J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv Mater. 2016;28(21):4126.

    CAS  Google Scholar 

  86. [86]

    Sangster J, Pelton AD. The K–Sb (potassium–antimony) system. J Phase Equilib. 1993;14(4):510.

    CAS  Google Scholar 

  87. [87]

    McCulloch WD, Ren X, Yu M, Huang Z, Wu Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces. 2015;7(47):26158.

    CAS  Google Scholar 

  88. [88]

    An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano. 2018;12(12):12932.

    CAS  Google Scholar 

  89. [89]

    Zheng J, Yang Y, Fan X, Ji G, Ji X, Wang H, Hou S, Zachariah MR, Wang C. Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy Environ Sci. 2019;12(2):615.

    CAS  Google Scholar 

  90. [90]

    Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv Mater. 2017;29(21):1605299.

    Google Scholar 

  91. [91]

    Wang C, Wang L, Li F, Cheng F, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater. 2017;29(35):1702212.

    Google Scholar 

  92. [92]

    Wang L, Wang C, Li F, Cheng F, Chen J. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun. 2018;54(1):38.

    Google Scholar 

  93. [93]

    Wang C, Du D, Song M, Wang Y, Li F. A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range. Adv Energy Mater. 2019;9(16):1900022.

    Google Scholar 

  94. [94]

    Qi S, Xie X, Peng X, Ng DHL, Wu M, Liu Q, Yang J, Ma J. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys Status Solidi RRL. 2019;13(10):1900209.

    CAS  Google Scholar 

  95. [95]

    Wang X, Tatsuo N, Isamu U. Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte. J Power Sources. 2002;104(1):90.

    CAS  Google Scholar 

  96. [96]

    Su D, Dou S, Wang G. Bismuth: a new anode for the Na-ion battery. Nano Energy. 2015;12:88.

    CAS  Google Scholar 

  97. [97]

    Yuan Y, Wang C, Lei K, Li H, Li F, Chen J. Sodium-ion hybrid capacitor of high power and energy density. ACS Cent Sci. 2018;4(9):1261.

    CAS  Google Scholar 

  98. [98]

    Petric A, Pelton AD. The Bi–K (bismuth–potassium) system. J Phase Equilib. 1991;12(1):29.

    CAS  Google Scholar 

  99. [99]

    Lei K, Zhu Z, Yin Z, Yan P, Li F, Chen J. Dual interphase layers in situ formed on a manganese-based oxide cathode enable stable potassium storage. Chem. 2019;5(12):3220.

    CAS  Google Scholar 

  100. [100]

    Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate–dimethyl carbonate mixtures. J Electrochem Soc. 1996;143(12):3809.

    CAS  Google Scholar 

  101. [101]

    Huang J, Lin X, Tian H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater. 2018;8(19):1703496.

    Google Scholar 

  102. [102]

    Aurbach D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources. 2000;89(2):206.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 21822506, 51761165025, 51671107 and 21603108).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kai-Xiang Lei or Shi-Wen Wang or Fu-Jun Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lei, K., Wang, J., Chen, C. et al. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. (2020). https://doi.org/10.1007/s12598-020-01463-9

Download citation

Keywords

  • Potassium-ion batteries
  • Alloys
  • Reaction mechanism
  • (De)potassiation
  • Electrochemical performance