In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery

Abstract

Ti2Nb10O29/C nanoparticles with a carbon content of 13 wt% and a mean size of 50 nm were fabricated through a convenient and effective in situ sol–gel process. The small grain size and carbon modification can improve the pseudocapacitive effect of the Ti2Nb10O29/C nanoparticles, leading to excellent rate capacity, especially at high current rate. Specifically, the discharge capacity of the Ti2Nb10O29/C electrode is 258.3, 236.0, 216.6, 184.5 and 161.5 mAh·g−1 at different current densities of 1C, 5C, 10C, 20C and 30C. Nevertheless, the discharge capacity of the Ti2Nb10O29 electrode is 244.9 mAh·g−1 at 1C, which is rapidly reduced to 89.7 mAh·g−1 at 30C. In addition, the small size and carbon layer of the Ti2Nb10O29/C nanoparticles can supply abundant active sites for Li+ storage as well as enhance the electronic conductivity and Li+ diffusion, endowing these nanoparticles with a high discharge capacity and excellent cycle performance.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.

    CAS  Google Scholar 

  2. [2]

    Wang X, Meng Q, Wang Y, Liang H, Bai Z, Wang K, Lou X, Cai B, Yang L. TiO2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage. Appl Energy. 2016;175:488.

    CAS  Google Scholar 

  3. [3]

    Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc. 1997;144(8):L208.

    CAS  Google Scholar 

  4. [4]

    Hu L, Luo L, Tang L, Lin C, Li R, Chen Y. Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J Mater Chem A. 2018;6(21):9799.

    CAS  Google Scholar 

  5. [5]

    Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chem Sus Chem. 2014;7(7):1858.

    CAS  Google Scholar 

  6. [6]

    Lin C, Yu S, Zhao H, Wu S, Wang G, Yu L, Li Y, Zhu JJ, Li J, Lin S. Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries. Sci Rep. 2015;5:17836.

    CAS  Google Scholar 

  7. [7]

    Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2019. https://doi.org/10.1016/j.cej.2019.123489.

    Article  Google Scholar 

  8. [8]

    Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;36(3):199.

    Google Scholar 

  9. [9]

    Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.

    CAS  Google Scholar 

  10. [10]

    Lou S, Cheng X, Gao J, Li Q, Wang L, Cao Y, Ma Y, Zuo P, Gao Y, Du C, Huo H, Yin G. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater. 2018;11:57.

    Google Scholar 

  11. [11]

    Tong Z, Xu H, Liu G, Zhao J, Li Y. Pseudocapacitive effect and Li+ diffusion coefficient in three-dimensionally ordered macroporous vanadium oxide for energy storage. Electrochem Commun. 2016;69:46.

    CAS  Google Scholar 

  12. [12]

    Li Y, Zheng Y, Yao J, Xiao J, Yang J, Xiao S. Facile synthesis of nanocrystalline-assembled nest-like NiO hollow microspheres with superior lithium storage performance. RSC Adv. 2017;7(50):31287.

    CAS  Google Scholar 

  13. [13]

    Wang HE, Zhao X, Xin K, Li Y, Chen L, Yang X, Zhang W, Su BL, Cao G. Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl Mater Inter. 2017;9(50):43665.

    CAS  Google Scholar 

  14. [14]

    Lübke M, Shin J, Marchand P, Brett D, Shearing P, Liu Z, Darr JA. Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries. J Mater Chem A. 2015;3:22908.

    Google Scholar 

  15. [15]

    Liu X, Liu M, Hu Y, Hu M, Duan X, Liu G, Ma J. Mesoporous Ti2Nb10O29 microspheres constructed by interconnected nanoparticles as high performance anode material for lithium ion batteries. Ceram Int. 2019;45(3):3574.

    CAS  Google Scholar 

  16. [16]

    Liu G, Jin B, Bao K, Liu Y, Xie H, Hu M, Zhang R, Jiang Q. Facile fabrication of porous Ti2Nb10O29 microspheres for high-rate lithium storage applications. Int J Hydrog Energy. 2017;42(36):22965.

    CAS  Google Scholar 

  17. [17]

    Fu Q, Hou J, Lu R, Lin C, Ma Y, Li J, Chen Y. Electrospun Ti2Nb10O29 hollow nanofibers as high-performance anode materials for lithium-ion batteries. Mater Lett. 2018;214:60.

    CAS  Google Scholar 

  18. [18]

    Cong DP, Kim J, Tran VT, Kim SJ, Jeong SY, Choi JH, Cho CR. Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes. Electrochim Acta. 2017;236:451.

    Google Scholar 

  19. [19]

    Sun Y, Liu X, Huang F, Li S, Shen Y, Xie A. Spinach juice-derived porous Fe2O3/carbon nanorods as superior anodes for lithium-ion batteries. Mater Res Bull. 2017;95:321.

    CAS  Google Scholar 

  20. [20]

    Li H, Zhou H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun. 2012;48(9):1201.

    CAS  Google Scholar 

  21. [21]

    Sun J, Teng D, Liu Y, Chi C, Yu Y, Lan J, Yang X. Enhanced lithium storage capability of a dual-phase Li4Ti5O12-TiO2-carbon nanofiber anode with interfacial pseudocapacitive effect. RSC Adv. 2014;4:48632.

    CAS  Google Scholar 

  22. [22]

    Liu G, Jin B, Zhang R, Bao K, Xie H, Guo J, Wei M, Jiang Q. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries. Int J Hydrog Energy. 2016;41(33):14807.

    CAS  Google Scholar 

  23. [23]

    Wan G, Yang L, Shi S, Tang Y, Xu X, Wang G. Ti2Nb10O29 microspheres coated with ultrathin N-doped carbon layers by atomic layer deposition for enhanced lithium storage. Chem Commun. 2019;55(4):517.

    CAS  Google Scholar 

  24. [24]

    Liu X, Wang H, Zhang S, Liu G, Xie H, Ma J. Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries. Electrochim Acta. 2018;292:759.

    CAS  Google Scholar 

  25. [25]

    Huang SZ, Zhang Q, Yu W, Yang XY, Wang C, Li Y, Su BL. Grain boundaries enriched hierarchically mesoporous MnO/carbon microspheres for superior lithium ion battery anode. Electrochim Acta. 2016;222:561.

    CAS  Google Scholar 

  26. [26]

    Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61(20):14095.

    CAS  Google Scholar 

  27. [27]

    Ma C, Zhang W, He YS, Gong Q, Che H, Ma ZF. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale. 2016;8:4121.

    CAS  Google Scholar 

  28. [28]

    Yao L, Hou X, Hu S, Wang J, Li M, Su C, Tade MO, Shao Z, Liu X. Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J Power Source. 2014;258:305.

    CAS  Google Scholar 

  29. [29]

    Wang YX, Yang J, Chou SL, Liu HK, Zhang WX, Zhao D, Dou SX. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nature Commun. 2015;6:8689.

    CAS  Google Scholar 

  30. [30]

    Liu G, Liu X, Wang L, Ma J, Xie H, Ji X, Guo J, Zhang R. Hierarchical Li4Ti5O12-TiO2 microspheres assembled from nanoflakes with exposed Li4Ti5O12 (011) and anatase TiO2 (001) facets for high-performance lithium-ion batteries. Electrochim Acta. 2016;222:1103.

    CAS  Google Scholar 

  31. [31]

    Liu H, Zhang Z, Hu L, Gao N, Sang L, Liao M, Ma R, Xu F, Fang X. New UV-A photodetector based on individual potassium niobate nanowires with high performance. Adv Opt Mater. 2014;2(8):771.

    CAS  Google Scholar 

  32. [32]

    Tan BJ, Klabunde KJ, Sherwood PMA. Layered cobalt-manganese particles on alumina and silica. J Am Chem Soc. 1991;113(3):855.

    CAS  Google Scholar 

  33. [33]

    Hou BH, Wang YY, Guo JZ, Ning QL, Xi XT, Pang WL, Cao AM, Wang X, Zhang JP, Wu XL. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale. 2018;10:9218.

    CAS  Google Scholar 

  34. [34]

    Chen Y, Xia H, Lu L, Xue J. Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. J Mater Chem. 2012;22(11):5006.

    CAS  Google Scholar 

  35. [35]

    Roh HK, Kim HK, Kim MS, Kim DH, Chung KY, Roh KC, Kim KB. In-situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016;6:1844.

    Google Scholar 

  36. [36]

    Kaowphong S, Chumha N, Nimmanpipug P, Kittiwachana S. Nanosized GdVO4 powders synthesized by sol-gel method using different carboxylic acids. Rare Met. 2018;37(7):561.

    CAS  Google Scholar 

  37. [37]

    Jiang ZY, Zhu KR, Lin ZQ, Jin SW, Li G. Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol-gel method. Rare Met. 2018;37(10):881.

    CAS  Google Scholar 

  38. [38]

    Zhu X, Pei L, Zhu R, Yu J, Tang R, Wei F. Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci Rep. 2018;8:12387.

    Google Scholar 

  39. [39]

    Ouzzine M, Maciá-Agulló JA, Lillo-Ródenas MA, Quijada C, Linares-Solano A. Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Appl Catal B-Environ. 2014;154–155:285.

    Google Scholar 

  40. [40]

    Jiang C, Ichihara M, Honma I, Zhou H. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta. 2007;52(23):6470.

    CAS  Google Scholar 

  41. [41]

    Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C. 2010;114(1):664.

    Google Scholar 

  42. [42]

    Deng S, Luo Z, Liu Y, Lou X, Lin C, Yang C, Zhao H, Zheng P, Sun Z, Li J, Wang N, Wu H. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J Power Sources. 2017;362:250.

    CAS  Google Scholar 

  43. [43]

    Xiao C, He P, Ren J, Yue M, Huang Y, He X. Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries. RSC Adv. 2018;8:27580.

    CAS  Google Scholar 

  44. [44]

    Jung BY, Lim HS, Sun YK, Suh KD. Synthesis of Fe3O4/C composite microspheres for a high performance lithium-ion battery anode. J Power Sources. 2013;244:177.

    CAS  Google Scholar 

  45. [45]

    Li X, Jiang YZ, Li XK, Jiang HX, Liu JL, Feng J, Lin SB, Guan X. Electrochemical properties of LiFePO4/C composite cathode with different carbon sources. Rare Met. 2018;37(9):743.

    CAS  Google Scholar 

  46. [46]

    Jiao X, Hao Q, Xia X, Yao D, Ouyang Y, Lei W. Boosting long-cycle-life energy storage with holey graphene supported TiNb2O7 network nanostructure for lithium ion hybrid supercapacitors. J Power Sources. 2018;403:66.

    CAS  Google Scholar 

  47. [47]

    Jo C, Kim Y, Hwang J, Shim J, Chun J, Lee J. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes. Chem Mater. 2014;26(11):3508.

    CAS  Google Scholar 

  48. [48]

    Sun YG, Sun TQ, Lin XJ, Tao XS, Zhang D, Zeng C, Cao AM, Wan LJ. Facile synthesis of hollow Ti2Nb10O29 microspheres for high-rate anode of Li-ion batteries. Sci China Chem. 2018;61(6):670.

    CAS  Google Scholar 

  49. [49]

    Zhang Z, Li Q, Li Z, Ma J, Li C, Yin L, Gao X. Partially reducing reaction tailored mesoporous 3D carbon coated NiCo-NiCoO2/carbon xerogel hybrids as anode materials for lithium ion battery with enhanced electrochemical performance. Electrochim Acta. 2016;203:117.

    CAS  Google Scholar 

  50. [50]

    Madram AR, Daneshtalab R, Sovizi MR. Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries. RSC Adv. 2016;6:101477.

    CAS  Google Scholar 

  51. [51]

    Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R. Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte. J Power Sources. 2009;189:503.

    CAS  Google Scholar 

  52. [52]

    Mao W, Liu K, Guo G, Liu G, Bao K, Guo J, Hu M, Wang W, Li B. Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim Acta. 2017;253:396.

    CAS  Google Scholar 

  53. [53]

    Ashish AG, Arunkumar P, Babu B, Manikandan P, Sarang S, Shaijumon MM. TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries. Electrochim Acta. 2015;176:285.

    CAS  Google Scholar 

  54. [54]

    Zhu K, Wang Q, Kim JH, Pesaran AA, Frank AJ. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C. 2012;116(22):11895.

    CAS  Google Scholar 

  55. [55]

    Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.

    CAS  Google Scholar 

  56. [56]

    Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B. 1997;101(39):7717.

    Google Scholar 

  57. [57]

    Yang C, Zhang Y, Lv F, Lin C, Liu Y, Wang K, Feng J, Wang X, Chen Y, Li J, Guo S. Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high performance lithium-ion storage. J Mater Chem A. 2017;5(42):22297.

    CAS  Google Scholar 

  58. [58]

    Cook JB, Kim HS, Yan Y, Ko JS, Robbennolt S, Dunn B, Tolbert SH. Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv Energy Mater. 2016;6(9):1501937.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51802163), the National Natural Science Foundation of Henan Department of Education (No. 20A480004) and the China Postdoctoral Science Foundation (No. 2017M622564).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao-Di Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2573 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhao, Y., Tang, Y. et al. In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. (2020). https://doi.org/10.1007/s12598-020-01462-w

Download citation

Keywords

  • Nanoparticles
  • Anode materials
  • Sol–gel method
  • Energy storage