Microstructure and properties evolution of Al–17Si–2Fe alloys with addition of quasicrystal Al–Mn–Ti master alloy

Abstract

The Fe-rich intermetallic compounds in Al–17Si–2Fe were modified via Al–Mn–Ti quasicrystal master alloy. The effect of master alloy content on the Fe-rich phase morphology was studied by scanning electron microscope (SEM) and thermodynamic calculation. Results show that the microstructure of the Al–Mn–Ti master alloy consists of binary quasicrystal matrix and ternary AlMnTi secondary phase. The evolutive tendency of Fe-rich intermetallic compounds with content of quasi-crystal Al–Mn–Ti master alloy increasing can be described as follows: long needle-shaped β phase for Al–17Si–2Fe alloy, long plate-shaped ternary δ phase for 3 wt% master alloy addition, Chinese-script and polyhedral α phases for 4 wt% master alloy addition and finer plate-shaped quaternary δ phase with α phases for 5 wt% master alloy addition. The ultimate tensile strength of the Al–17Si–2Fe alloy with 4 wt% master alloy addition (a mass ratio of wMn/wFe ≈ 0.7) increases by 23.8% and the friction coefficient decreases from 0.45 to 0.35 compared with those of Mn-free alloy. α-Fe phases have less negative effect on the matrix compared with the long needle-shaped β phase and the plate-shaped δ phase.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. [1]

    Jiao XY, Wang J, Liu CF, Guo ZP, Tong GD, Ma SL, Bi Y, Zhang YF, Xiong SM. Characterization of high-pressure die-cast hypereutectic Al–Si alloys based on microstructural distribution and fracture morphology. J Mater Sci Technol. 2019;35(6):1099.

    Article  Google Scholar 

  2. [2]

    Wang J, Guo Z, Song JL, Hu WH, Li JC, Xiong SM. On the growth mechanism of the primary silicon particle in a hypereutectic Al–20 wt%Si alloy using synchrotron X-ray tomography. Mater Des. 2018;137:176.

    CAS  Article  Google Scholar 

  3. [3]

    Wu YY, Liu XF, Jing BG, Huang CZ. Eutectic nucleation in Al–25wt%Si alloy through DSC. Rare Met. 2010;29(1):62.

    Article  Google Scholar 

  4. [4]

    Zhang ZK, Guo YC, Xia F, Li JP. Iron-rich phase in Al–Si alloy affected by Ce-Rich rare earths and ultrasonic field. Chin J Rare Met. 2019;43(2):219.

    Google Scholar 

  5. [5]

    Chanyathunyaroj K, Patakham U, Kou S, Limmaneevichitr C. Mechanical properties of squeeze-cast Al–7Si–0.3Mg alloys with Sc-modified Fe-rich intermetallic compounds. Rare Met. 2018;37(9):769.

    CAS  Article  Google Scholar 

  6. [6]

    Wu YN, Liao HC. Corrosion behavior of extruded near eutectic Al–Si–Mg and 6063 alloys. J Mater Sci Technol. 2013;29(4):380.

    CAS  Article  Google Scholar 

  7. [7]

    Srivastava AK, Srivastava VC, Gloter A, Ojha SN. Microstructural features induced by spray processing and hot extrusion of an Al–18% Si–5% Fe–1.5% Cu alloy. Acta Mater. 2006;54(7):1741.

    CAS  Article  Google Scholar 

  8. [8]

    Lin C, Wu SS, Zhong G, Wan L, An P. Effect of ultrasonic vibration on Fe-containing intermetallic compounds of hypereutectic Al–Si alloys with high Fe content. Trans Nonferrous Met Soc China. 2013;23(5):1245.

    CAS  Article  Google Scholar 

  9. [9]

    Tzeng YC, Wu CT, Bor HY, Horng JL, Tsai ML, Lee SL. Effects of scandium addition on iron-bearing phases and tensile properties of Al–7Si–6Mg alloys. Mater Sci Eng A. 2014;593:103.

    CAS  Article  Google Scholar 

  10. [10]

    Patakham U, Limmaneevichitr C. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg alloys. J Alloys Compd. 2014;616:198.

    CAS  Article  Google Scholar 

  11. [11]

    Sreeja SS, Pillai KM, Rajan TPD, Pai BC. Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behavior, structure and mechanical properties of Al–7Si–0.3Mg–0.8Fe alloy. Mater Sci Eng A. 2007;460–461:561.

    Article  Google Scholar 

  12. [12]

    Gao T, Hu KQ, Wang LS, Zhang BR, Liu XF. Morphological evolution and strengthening behavior of α-Al(Fe, Mn)Si in Al–6Si–2Fe–xMn alloys. Res Phys. 2017;7:1051.

    Google Scholar 

  13. [13]

    Gao T, Wu YY, Li C, Liu XF. Morphologies and growth mechanisms of α-Al(FeMn)Si in Al–Si–Fe–Mn alloy. Mater Lett. 2013;110:191.

    CAS  Article  Google Scholar 

  14. [14]

    Öz T, Karaköse E, Keskin M. Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5wt.%Mn–xwt.%Be (x = 0, 1, 3, 5) alloys. Mater Des. 2013;50:399.

    Article  Google Scholar 

  15. [15]

    Yamaguchi T, Fujima N. Atomic structure of Al–Mn quasicrystal. J Non-Cryst Solids. 1990;117–118:765.

    Article  Google Scholar 

  16. [16]

    Yang YJ. Preparation of Al–Mn–Ti quasi-crystal mater alloy and its application in Al–25% Si alloy. Taiyuan: Taiyuan University of Technology; 2010. 56.

    Google Scholar 

  17. [17]

    Bacaicoa I, Wicke M, Luetje M, Zeismann F, Brueckner-Foit A, Geisert A, Fehlbier M. Characterization of casting defects in a Fe-rich Al–Si–Cu alloy by microtomography and finite element analysis. Eng Fract Mech. 2017;183:159.

    Article  Google Scholar 

  18. [18]

    Bacaicoa I, Luetje M, Wicke M, Geisert A, Zeismann F, Brueckner-Foit A. 3D morphology of Al5FeSi inclusions in high Fe-content Al–Si–Cu alloys. Procedia. 2016;2:2269.

    Google Scholar 

  19. [19]

    Rømming C, Hansen V, Gjonnes J. Crystal structure of β-Al4.5FeSi. Acta Cryst B. 1994;50:307.

    Article  Google Scholar 

  20. [20]

    Timpel M, Wanderka N, Grothausmann R, Banhart J. Distribution of Fe-rich phases in eutectic grains of Sr-modified Al–10 wt%Si–0.1 wt% Fe casting alloy. J Alloys Compd. 2013;558:18.

    CAS  Article  Google Scholar 

  21. [21]

    Kral MV. A crystallographic identification of intermetallic phases in Al–Si alloys. Mater Lett. 2005;59(18):2271.

    CAS  Article  Google Scholar 

  22. [22]

    Murray J, McAlister AJ. The Al–Si (aluminum–silicon) system. Bull Alloy Phase Diagr. 1984;5(1):74.

    CAS  Article  Google Scholar 

  23. [23]

    Dahle AK, Nogita K, McDonald SD, Dinnis C, Lu L. Eutectic modification and microstructure development in Al–Si Alloys. Mater Sci Eng A. 2005;413–414:243.

    Article  Google Scholar 

  24. [24]

    Timpel M, Wanderka N, Murty BS, Banhart J. Three-dimensional visualization of the microstructure development of Sr-modified Al–15Si casting alloy using FIB-EsB tomography. Acta Mater. 2010;58(20):6600.

    CAS  Article  Google Scholar 

  25. [25]

    Day MG, Hellawell A. The microstructure and crystallography of aluminium–silicon eutectic alloys. Proc R Soc A. 1968;305:473.

    CAS  Google Scholar 

  26. [26]

    Lin C, Wu SS, Lü SL, Wu HB, Chen HX. Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al–Si alloy with rheo-squeeze casting. Trans Nonferrous Met Soc China. 2019;29(2):253.

    CAS  Article  Google Scholar 

  27. [27]

    Narayanan LA, Samuel FH, Gruzleski JE. Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metall Mater Trans A. 1994;25:1761.

    Article  Google Scholar 

  28. [28]

    Kim HY, Park TY, Han SW, Lee HM. Effects of Mn on the crystal structure of α-Al(Mn, Fe)Si particles in A356 alloys. J Cryst Growth. 2006;291(1):207.

    CAS  Article  Google Scholar 

  29. [29]

    Becker H, Bergh T, Vullum PE, Leineweber A, Li Y. Effect of Mn and cooling rates on α-, β- and δ-Al–Fe–Si intermetallic phase formation in a secondary Al–Si alloy. Materialia. 2019;5:100198.

    Article  Google Scholar 

  30. [30]

    Bidmeshki C, Abouei V, Saghafifian H, Shabestari SG, Noghani MT. Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al–17.5%Si alloys. J Mater Res Technol. 2016;5(3):250.

    CAS  Article  Google Scholar 

  31. [31]

    Samuel AM, Samuel FH, Doty HW. Observations on the formation of β-Al5FeSi phase in 319 type Al–Si alloys. J Mater Sci. 1996;31:5529.

    CAS  Article  Google Scholar 

  32. [32]

    Hwang JY, Doty HW, Kaufman MJ. The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys. Mater Sci Eng A. 2008;488(1–2):496.

    Article  Google Scholar 

  33. [33]

    Seifeddine S, Johansson S, Svensson IL. The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al–Si based alloys. Mater Sci Eng A. 2008;490(1–2):385.

    Article  Google Scholar 

  34. [34]

    Taylor JA, Schaffer GB, Stjohn DH. The role of iron in porosity formation in Al–Si–Cu based casting alloys—Part II: phase diagram approach. Metall Mater Trans A. 1999;30:1651.

    Article  Google Scholar 

  35. [35]

    Mascre C. Influence of iron and manganese on type A-S13 (Alpax) alloys. Fonderie. 1955;108:4330.

    Google Scholar 

  36. [36]

    Wolf W, Sitta BO, Martini LM, Jorge AM Jr, Bolfarini C, Kiminami CS, Botta WJ. Effect of Cr addition on the formation of the decagonal quasicrystalline phase of a rapidly solidified Al–Ni–Co alloy. J Alloys Compd. 2017;707:41.

    CAS  Article  Google Scholar 

  37. [37]

    Li RT, Murugan VK, Dong ZL, Khor KA. Comparative study on the corrosion resistance of Al–Cr–Fe alloy containing quasicrystals and pure Al. J Mater Sci Technol. 2016;32(10):1054.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51201071); the National Natural Science Foundation of Jiangsu Provence (BK20161270); Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents (2018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Pang, Z., Wang, L. et al. Microstructure and properties evolution of Al–17Si–2Fe alloys with addition of quasicrystal Al–Mn–Ti master alloy. Rare Met. (2020). https://doi.org/10.1007/s12598-020-01449-7

Download citation

Keywords

  • Fe-rich intermetallic compounds
  • Al–Mn–Ti quasicrystal alloy
  • Microstructure
  • Mechanical properties
  • Friction coefficient