Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries

Abstract

Lithium–sulfur batteries (LSBs) have received much concern as emerging high-power energy storage system. Nevertheless, the low conductivity of sulfur and polysulfide shuttle results in low rate capability and rapid capacity decay, which seriously limit its commercial application. Here, facile, sustainable and cost-effective strategy for preparing heteroatom-doped porous activated carbon (PAC) derived from biomass palm kernel shell (PKS) was developed for high-performance LSB applications. The presence of N, P and S heteroatoms with modification of the surface polarity brings about large amounts of active sites and improved adsorption property compared to those of common carbon materials. The PAC sample possesses desirable specific surface area (SSA) (2760 m2·g−1) as well as pore volume (1.6 cm3·g−1). Besides, the good electrical conductivity of PAC endows the material with excellent rate performance. The PAC-S electrode with a 60% of sulfur loading has a desirable first discharge capacity (1045 mAh·g1, 200 mA·g−1) with superb discharge capacity (869.8 mAh·g−1, 100th cycle) and cyclability (312.6 mAh·g−1, 800 mA·g−1, 1000th cycle), which can be mainly ascribed to its unique porous properties and the good conductivity of PAC.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. [1]

    Wu Q, Yang L, Wang X, Hu Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc Chem Res. 2017;50(2):435.

    CAS  Google Scholar 

  2. [2]

    Li J, Wei H, Peng Y, Geng L, Zhu L, Cao XY, Liu CS, Pang H. A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chem Commun. 2019;55(55):7922.

    CAS  Google Scholar 

  3. [3]

    Guo X, Zhang YZ, Zhang F, Li Q, Anjum DH, Liang H, Liu Y, Liu CS, Alshareef HN, Pang H. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J Mater Chem A. 2019;7(26):15969.

    CAS  Google Scholar 

  4. [4]

    Shi D, Zheng R, Sun MJ, Cao X, Sun C, Cui C, Liu CS, Zhao J, Du M. Semiconductive copper(i)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew Chem Int Ed. 2017;56(46):14637.

    CAS  Google Scholar 

  5. [5]

    Zheng S, Guo X, Xue H, Pan K, Liu C, Pang H. Facile one-pot generation of metal oxide/hydroxide@metal-organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting. Chem Commun. 2019;55(73):10904.

    CAS  Google Scholar 

  6. [6]

    Sun Z, Zhang J, Yin L, Hu G, Fang R, Cheng H, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun. 2017;8(1):14627.

    Google Scholar 

  7. [7]

    Wang F, Liu Y, Zhao Y, Wang Y, Wang Z, Zhang W, Ren F. Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl Sci. 2018;8(1):22.

    Google Scholar 

  8. [8]

    Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605.

    CAS  Google Scholar 

  9. [9]

    Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.

    Google Scholar 

  10. [10]

    Jiao C, Zhao CR, Zhang L, Zhao SQ, Pang GY, Sun HB, Lu SG. Electrochemical properties of high-loading sulfur–carbon materials prepared by in situ generation method. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01262-x.

    Article  Google Scholar 

  11. [11]

    Huang Q, Gao ZF, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium-sulfur batteries. Chin J Rare Met. 2018;42(7):772.

    Google Scholar 

  12. [12]

    Fang R, Zhao S, Sun Z, Wang D, Cheng H, Li F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29(48):1606823.

    Google Scholar 

  13. [13]

    Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, Liu C, Cheng HM, Li F. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv Mater. 2017;29(11):1603835.

    Google Scholar 

  14. [14]

    Ding Y, Kopold P, Hahn K, van Aken PA, Maier J, Yu Y. Facile solid-state growth of 3d well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv Funct Mater. 2016;26(7):1112.

    CAS  Google Scholar 

  15. [15]

    Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    CAS  Google Scholar 

  16. [16]

    Guo X, Zhang G, Li Q, Xue H, Pang H. Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Mater. 2018;15:171.

    Google Scholar 

  17. [17]

    Xia W, Mahmood A, Zou R, Xu Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci. 2015;8(7):1837.

    CAS  Google Scholar 

  18. [18]

    Xiao X, Zou L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem Soc Rev. 2020;49(1):301.

    CAS  Google Scholar 

  19. [19]

    You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries. J Mater Chem A. 2015;3(9):4799.

    CAS  Google Scholar 

  20. [20]

    Zhang Y, Liu J, Li SL, Su ZM, Lan YQ. Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem. 2019;1(3):100021.

    Google Scholar 

  21. [21]

    Geng P, Cao S, Guo X, Ding J, Zhang S, Zheng M, Pang H. Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. J Mater Chem A. 2019;7(26):19465.

    CAS  Google Scholar 

  22. [22]

    Zhong Y, Xia X, Deng S, Zhan J, Fang R, Xia Y, Wang X, Zhang Q, Tu J. Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries. Adv Energy Mater. 2018;8(1):1701110.

    Google Scholar 

  23. [23]

    Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS. A channel-type mesoporous In(III)–carboxylate coordination framework with high physicochemical stability for electrode material of supercapacitor. J Mater Chem A. 2014;2(25):9828.

    CAS  Google Scholar 

  24. [24]

    Guo X, Zheng S, Zhang G, Xiao X, Li X, Xu Y, Xue H. Nanostructured graphene-based materials for flexible energy storage. Energy Storage Mater. 2017;9:150.

    Google Scholar 

  25. [25]

    Zheng M, Zhang S, Chen S, Lin Z, Pang H, Yu Y. Activated graphene with tailored pore structure parameters for long cycle-life lithium-sulfur batteries. Nano Res. 2017;10(12):4305.

    CAS  Google Scholar 

  26. [26]

    Wu ZY, Liang HW, Hu BC, Yu SH. Emerging carbon-nanofiber aerogels: chemosynthesis versus biosynthesis. Angew Chem Int Ed. 2018;57(48):15646.

    CAS  Google Scholar 

  27. [27]

    Chen S, Huang X, Liu H, Sun B, Yeoh W, Li K, Zhang J, Wang G. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv Energy Mater. 2014;4(8):1301761.

    Google Scholar 

  28. [28]

    Lyu Z, Xu D, Yang L, Che R, Feng R, Zhao J, Li Y, Wu Q, Wang X, Hu Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy. 2015;12:657.

    CAS  Google Scholar 

  29. [29]

    Zhang S, Zheng M, Lin Z, Li N, Liu Y, Zhao B, Pang H, Cao J, He P, Shi Y. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J Mater Chem A. 2014;2(38):15889.

    CAS  Google Scholar 

  30. [30]

    Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X. Biomass derived carbon for energy storage devices. J Mater Chem A. 2017;5(6):2411.

    CAS  Google Scholar 

  31. [31]

    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828.

    CAS  Google Scholar 

  32. [32]

    Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater. 2010;22(7):813.

    CAS  Google Scholar 

  33. [33]

    Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy Environ Sci. 2011;4(3):736.

    CAS  Google Scholar 

  34. [34]

    Rybarczyk MK, Peng HJ, Tang C, Lieder M, Zhang Q, Titirici MM. Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chem. 2016;18(19):5169.

    CAS  Google Scholar 

  35. [35]

    Jin C, Sheng O, Zhang W, Luo J, Yuan H, Yang T, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode. Energy Storage Mater. 2018;15:218.

    Google Scholar 

  36. [36]

    Jiang S, Chen M, Wang X, Zhang Y, Huang C, Zhang Y, Wang Y. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem Eng J. 2019;355:478.

    CAS  Google Scholar 

  37. [37]

    Chen M, Jiang S, Huang C, Wang X, Cai S, Xiang K, Zhang Y, Xue J. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries. Chemsuschem. 2017;10(8):1803.

    CAS  Google Scholar 

  38. [38]

    Chen ZH, Du X, He J, Li F, Wang Y, Li YL, Li B, Xin S. Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2017;9(39):33855.

    CAS  Google Scholar 

  39. [39]

    Xia L, Zhou Y, Ren J, Wu H, Lin D, Xie F, Jie W, Lam KH, Xu C, Zheng Q. An eco-friendly microorganism method to activate biomass for cathode materials for high-performance lithium-sulfur batteries. Energy Fuels. 2018;32(9):9997.

    CAS  Google Scholar 

  40. [40]

    Yao H, Zheng G, Li W, McDowell MT, Seh Z, Liu N, Lu Z, Cui Y. Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 2013;13(7):3385.

    CAS  Google Scholar 

  41. [41]

    Hencz L, Gu X, Zhou X, Martens W, Zhang S. Highly porous nitrogen-doped seaweed carbon for high-performance lithium-sulfur batteries. J Mater Sci. 2017;52(20):12336.

    CAS  Google Scholar 

  42. [42]

    Song Y, Wang H, Ma Q, Li D, Yu W, Liu G, Wang T, Yang Y, Dong X, Wang J. Dandelion derived nitrogen-doped hollow carbon host for encapsulating sulfur in lithium sulfur battery. ACS Sustain Chem Eng. 2018;7:3042.

    Google Scholar 

  43. [43]

    Ma J, Ren F, Wang G, Xiong Y, Li Y, Wen J. Electrochemical performance of melt-spinning Al-Mg-Sn based anode alloys. Int J Hydrogen Energy. 2017;42(16):11654.

    CAS  Google Scholar 

  44. [44]

    Zegeye TA, Tsai MC, Cheng JH, Lin MH, Chen HM, Rick J, Su WN, Kuo CFJ, Hwang BJ. Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries. J Power Sources. 2017;353:298.

    CAS  Google Scholar 

  45. [45]

    Liu Y, Wang H, Yang K, Yang Y, Ma J, Pan K, Wang G, Ren F, Pang H. Enhanced electrochemical performance of SB2O3 as an anode for lithium-ion batteries by a stable cross-linked binder. Appl Sci. 2019;9(13):2677.

    CAS  Google Scholar 

  46. [46]

    Wang L, Liu J, Yuan S, Wang Y, Xia Y. To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes. Energy Environ Sci. 2016;9(1):224.

    CAS  Google Scholar 

  47. [47]

    Li X, Yang X, Xue H, Pang H. Metal–organic frameworks as a platform for clean energy applications. Energy Chem. 2020;2(2):100027.

    Google Scholar 

  48. [48]

    Li F, Liu Q, Hu J, Feng Y, He P, Ma J. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale. 2019;11(33):15418.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 21671170, 21673203, 21805136 and 21201010), the Natural Science Foundation of Jiangsu Province (No.BK20170999), Program for New Century Excellent Talents of the University in China (No.NCET-13-0645) and the Six Talent Plan (No.2015-XCL-030). We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions and the technical support we received at the Testing Center of Yangzhou University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huan Pang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2812 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, X., Guo, X., Xu, M. et al. Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Met. (2020). https://doi.org/10.1007/s12598-020-01439-9

Download citation

Keywords

  • Palm kernel shell
  • Heteroatom doping
  • Porous activated carbon
  • Lithium–sulfur battery