Skip to main content

Advertisement

Log in

Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium metal has been regarded as one of the most promising anode materials for high-energy-density batteries due to its extremely high theoretical gravimetric capacity of 3860 mAh·g−1 along with its low electrochemical potential of − 3.04 V. Unfortunately, uncontrollable Li dendrite growth and repetitive destruction/formation of the solid electrolyte interphase layer lead to poor safety and low Coulombic efficiencies (CEs) for long-term utilization, which largely restricts the practical applications of lithium metal anode. In this review, we comprehensively summarized important progresses achieved to date in suppressing Li dendrite growth. Strategies for protection of Li metal anodes include designing porous structured hosts, fabricating artificial solid electrolyte interface (SEI) layers, introducing electrolyte additives, using solid-state electrolytes and applying external fields. The protection of Li metal anodes can be achieved by regulating the stripping and deposition behaviours of Li ions. Finally, the challenges remaining for lithium metal battery systems and future perspectives for Li metal anodes in practical applications are outlined, which are expected to shed light on future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    Article  CAS  Google Scholar 

  2. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294.

    Article  CAS  Google Scholar 

  3. Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016;1(1):16071.

    Article  CAS  Google Scholar 

  4. Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.

    CAS  Google Scholar 

  5. Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotech. 2017;12(3):194.

    Article  CAS  Google Scholar 

  6. Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy. 2018;2:16.

    Article  CAS  Google Scholar 

  7. Li B, Wang Y, Yang S. A material perspective of rechargeable metallic lithium anodes. Adv Energy Mater. 2018;8(13):1702296.

    Article  CAS  Google Scholar 

  8. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    Article  CAS  Google Scholar 

  9. Xu W, Wang JL, Ding F, Chen XL, Nasybulin E, Zhang YH, Zhang JG. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.

    Article  CAS  Google Scholar 

  10. Lang JL, Qi LH, Luo YZ, Wu H. High performance lithium metal anode: progress and prospects. Energy Storage Mater. 2017;7:115.

    Article  Google Scholar 

  11. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2014;11(2):19.

    Google Scholar 

  12. Huang Q, Gao ZF, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium–sulfur batteries. Chin J Rare Met. 2018;42(7):772.

    Google Scholar 

  13. Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare Met. 2017;36(5):339.

    Article  CAS  Google Scholar 

  14. Aurbach D, Zinigrad E, Cohen Y, Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics. 2002;148(3–4):405.

    Article  CAS  Google Scholar 

  15. Han FD, Westover AS, Yue J, Fan XL, Wang F, Chi MF, Leonard DN, Dudney N, Wang H, Wang CS. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187.

    Article  CAS  Google Scholar 

  16. Yang HJ, Guo C, Naveed A, Lei JY, Yang J, Nuli YN, Wang JL. Recent progress and perspective on lithium metal anode protection. Energy Storage Mater. 2018;14:199.

    Article  Google Scholar 

  17. Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271.

    Article  CAS  Google Scholar 

  18. Chazalviel JN. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A. 1990;42(12):7355.

    Article  CAS  Google Scholar 

  19. Matsuda Y, Ishikawa M, Yoshitake S, Morita M. Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques. J Power Sour. 1995;54(2):301.

    Article  CAS  Google Scholar 

  20. Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon JM, Bouchet R, Lascaud S. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta. 2006;51(25):5334.

    Article  CAS  Google Scholar 

  21. Brissot C, Rosso M, Chazalviel JN, Lascaud S. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J Electrochem Soc. 1999;146(12):4393.

    Article  CAS  Google Scholar 

  22. Monroe C, Newman J. Dendrite growth in lithium/polymer systems a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc. 2003;150(10):A1377.

    Article  CAS  Google Scholar 

  23. Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016;9(10):3221.

    Article  CAS  Google Scholar 

  24. Lu Y, Tu Z, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014;13(10):961.

    Article  CAS  Google Scholar 

  25. Tu Z, Lu Y, Archer L. A dendrite-free lithium metal battery model based on nanoporous polymer/ceramic composite electrolytes and high-energy electrodes. Small. 2015;11(22):2631.

    Article  CAS  Google Scholar 

  26. Aurbach D. The electrochemical behavior of active metal electrodes in nonaqueous solutions. In: Aurbach D, editor. Nonaqueous Electrochemistry. New York: Marcel Dekker Inc; 1999. 289.

    Chapter  Google Scholar 

  27. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.

    Article  CAS  Google Scholar 

  28. Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG. Advanced micro/nanostructures for lithium metal anodes. Adv Sci. 2017;4(3):1600445.

    Article  CAS  Google Scholar 

  29. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3(3):1500213.

    Article  CAS  Google Scholar 

  30. Wang X, Pan Z, Wu Y, Ding X, Hong X, Xu G, Liu M, Zhang Y, Li W. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2019;12(3):525.

    Article  CAS  Google Scholar 

  31. Peng S, Li T, Zhang R, Shen X, Cheng XB, Xu R, Huang JQ, Chen XR, Liu H, Zhang Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv Mater. 2019;31(8):1807131.

    Article  CAS  Google Scholar 

  32. Niu C, Pan H, Xu W, Xiao J, Zhang JG, Luo L, Wang C, Mei D, Meng J, Wang J, Wang X, Liu Z, Mai L, Liu J. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat Nanotech. 2019;14(6):594.

    Article  CAS  Google Scholar 

  33. Liu S, Xia X, Zhong Yu, Deng S, Yao Z, Zhang L, Cheng XB, Wang X, Zhang Q, Tu J. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv Energy Mater. 2018;8(8):1702322.

    Article  CAS  Google Scholar 

  34. Li S, Liu Q, Zhou J, Pan T, Gao L, Zhang W, Fan L, Lu Y. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv Funct Mater. 2019;29(19):1808847.

    Article  CAS  Google Scholar 

  35. Deng W, Zhou X, Fang Q, Liu Z. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv Energy Mater. 2018;8(12):1703152.

    Article  CAS  Google Scholar 

  36. Wang H, Li Y, Li Y, Liu Y, Lin D, Zhu C, Chen G, Yang A, Yan K, Chen H, Zhu Y, Li J, Xie J, Zhang Z, Vila R, Pei A, Wang K, Cui Y. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 2019;19(2):1326.

    Article  CAS  Google Scholar 

  37. Liang F, Lin L, Feng Z, Chu C, Pan J, Yang J, Qian Y. Spatial separation of lithiophilic surface and superior conductivity for advanced Li metal anode: the case of acetylene black and N-doped carbon spheres. J Mater Chem A. 2019;7(15):8765.

    Article  CAS  Google Scholar 

  38. Zhang D, Wang S, Li B, Gong Y, Yang S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv Mater. 2019;31(33):1901820.

    Article  CAS  Google Scholar 

  39. Hou G, Ren X, Ma X, Zhang L, Zhai W, Ai Q, Xu X, Zhang L, Si P, Feng P, Ding F, Ci L. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge. J Power Sour. 2018;386:77.

    Article  CAS  Google Scholar 

  40. Chen L, Chen H, Wang Z, Gong X, Chen X, Wang M, Jiao S. Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode. Chem Eng J. 2019;363:270.

    Article  CAS  Google Scholar 

  41. Cao J, Sun HB, Zhang L, Zhao SQ, Pang GY, Zhao CR, Lu SG. A high-performance lithium anode based on N-doped composite graphene. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01263-w.

    Article  Google Scholar 

  42. Liu Y, Qin X, Zhang S, Huang Y, Kang F, Chen G, Li B. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite free lithium metal anode. Energy Storage Mater. 2019;18:320.

    Article  Google Scholar 

  43. Li Z, Li X, Zhou L, Xiao Z, Zhou S, Zhang X, Li L, Zhi L. A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy. 2018;49:179.

    Article  CAS  Google Scholar 

  44. Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan Tao X, Cui Y. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci. 2016;113(11):2862.

    Article  CAS  Google Scholar 

  45. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015;6:8058.

    Article  CAS  Google Scholar 

  46. Li Q, Zhu SP, Lu YY. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater. 2017;27(18):1606422.

    Article  CAS  Google Scholar 

  47. Liu H, Wang ER, Zhang Q, Ren YB, Guo XW, Wang L, Li GY, Yu HJ. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Mater. 2019;17:253.

    Article  Google Scholar 

  48. Qiu H, Tang T, Asif M, Huang X, Hou Y. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Adv Funct Mater. 2019;29(19):1808468.

    Article  CAS  Google Scholar 

  49. Wang YY, Wang ZJ, Lei DN, Lv W, Zhao Q, Ni B, Liu Y, Li BH, Kang FY, He YB. Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance. ACS Appl Mater Interfaces. 2018;10(24):20244.

    Article  CAS  Google Scholar 

  50. Yang G, Chen J, Xiao P, Agboola PO, Shakir I, Xu Y. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. J Mater Chem A. 2018;6(21):9899.

    Article  CAS  Google Scholar 

  51. Feng Y, Zhang C, Li B, Xiong S, Song J. Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface. J Mater Chem A. 2019;7(11):6090.

    Article  CAS  Google Scholar 

  52. Chen MX, Cheng LW, Chen JC, Zhou Y, Liang JD, Dong S, Chen M, Wang XT, Wang H. Facile and scalable modification of a Cu current collector toward uniform Li deposition of the Li metal anode. ACS Appl Mater Interfaces. 2020;12(3):3681.

    Article  CAS  Google Scholar 

  53. Zhu Y, Meng F, Sun N, Huai L, Wang M, Ren F, Li Z, Peng Z, Huang F, Gu H, Wang D. Suppressing sponge-like Li deposition via AlN-modified substrate for stable Li metal anode. ACS Appl Mater Interfaces. 2019;11(45):42261.

    Article  CAS  Google Scholar 

  54. Sun CZ, Lin AM, Li WW, Jin J, Sun YY, Yang JH, Wen ZY. In situ Conversion of Cu3P nanowires to mixed ion/electron-conducting skeleton for homogeneous lithium deposition. Adv Energy Mater. 2019;10(3):1902989.

    Article  CAS  Google Scholar 

  55. Shen F, Zhang F, Zheng YJ, Fan ZY, Li ZH, Sun ZT, Xuan YY, Zhao B, Lin ZQ, Gui XC. Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Mater. 2018;13:323.

    Article  Google Scholar 

  56. Liu K, Kong B, Liu W, Sun Y, Song MS, Chen J, Liu Y, Lin D, Pei A, Cui Y. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability. Joule. 2018;2(9):1857.

    Article  CAS  Google Scholar 

  57. Kim YJ, Kwon SH, Noh H, Yuk S, Lee H, Jin HS, Lee J, Zhang JG, Lee SG, Guim H. Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Mater. 2019;19:154.

    Article  Google Scholar 

  58. Cao ZJ, Li B, Yang SB. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv Mater. 2019;31(29):1901310.

    Article  CAS  Google Scholar 

  59. Huang X, Feng X, Zhang B, Zhang L, Zhang S, Gao B, Chu PK, Huo K. Lithiated NiCo2O4 nanorods anchored on 3D nickel foam enable homogeneous Li plating/stripping for high-power dendrite-free lithium metal anode. ACS Appl Mater Interfaces. 2019;11(35):31824.

    Article  CAS  Google Scholar 

  60. Peng Z, Ren F, Yang S, Wang M, Sun J, Wang D, Xu W, Zhang JG. A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure. Nano Energy. 2019;59:110.

    Article  CAS  Google Scholar 

  61. Lei M, Wang JG, Ren L, Nan D, Shen C, Xie K, Liu X. Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes. ACS Appl Mater Interfaces. 2019;11(34):30992.

    Article  CAS  Google Scholar 

  62. Yang T, Qian T, Shen X, Wang M, Liu S, Zhong J, Yan C, Rosei F. Single-cluster Au as an usher for deeply cyclable Li metal anodes. J Mater Chem A. 2019;7(24):14496.

    Article  CAS  Google Scholar 

  63. Chen L, Fan X, Xiao J, Chen J, Hou S, Wang C. High-energy Li metal battery with lithiated host. Joule. 2019;3(3):732.

    Article  CAS  Google Scholar 

  64. Kang HK, Woo SG, Kim JH, Lee SR, Lee DG, Yu JS. Three-dimensional monolithic corrugated graphene/Ni foam for highly stable and efficient Li metal electrode. J Power Sources. 2019;413:467.

    Article  CAS  Google Scholar 

  65. Wang Z, Lu S, Lu K, Li Y, Wang R, Cheng Y, Qin W, Wu X. Stable high capacity cycling of Li metal via directed and confined Li growth with robust composite sponge. J Power Sources. 2019;428:1.

    Article  CAS  Google Scholar 

  66. Li C, Wei J, Li P, Tang W, Feng W, Liu J, Wang Y, Xia Y. A dendrite-free Li plating host towards high utilization of Li metal anode in Li-O2 battery. Sci. Bull. 2019;64:478.

    Article  CAS  Google Scholar 

  67. Deng W, Zhu W, Zhou X, Liu Z. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Mater. 2018;15:266.

    Article  Google Scholar 

  68. Liu K, Li Z, Xie W, Li J, Rao D, Shao M, Zhang B, Wei M. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode. Energy Storage Mater. 2018;15:308.

    Article  Google Scholar 

  69. Zhao L, Wang W, Zhao X, Hou Z, Fan X, Liu Y, Quan Z. Ni3N nanocrystals decorated reduced graphene oxide with high ionic conductivity for stable lithium metal anode. ACS Appl. Energy Mater. 2019;2(4):2692.

    Article  CAS  Google Scholar 

  70. Liu W, Xia Y, Wang W, Jin J, Chen Y, Paek E, Mitlin D. Pristine or highly defective? Understanding the role of graphene structure for stable lithium metal plating. Adv. Energy Mater. 2019;9(3):1802918.

    Article  CAS  Google Scholar 

  71. Zhai P, Wang T, Yang W, Cui S, Zhang P, Nie A, Zhang Q, Gong Y. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv Energy Mater. 2019;9(18):1804019.

    Article  CAS  Google Scholar 

  72. Yang Y, Xiong J, Zeng J, Huang J, Zhao J. VGCF 3D conducting host coating on glass fiber filters for lithium metal anodes. Chem Commun. 2018;54(10):1178.

    Article  CAS  Google Scholar 

  73. Liu L, Yin YX, Li JY, Guo YG, Wan LJ. Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. Chem Commun. 2018;54(42):5330.

    Article  CAS  Google Scholar 

  74. Guo J, Zhao S, Yang H, Zhang F, Liu J. Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries. J Mater Chem A. 2019;7(5):2184.

    Article  CAS  Google Scholar 

  75. Liu L, Yin YX, Li JY, Wang SH, Guo YG, Wan LJ. Uniform lithium Nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater. 2018;30(10):1706216.

    Article  CAS  Google Scholar 

  76. Yan K, Sun B, Munroe P, Wang G. Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes. Energy Storage Mater. 2018;11:127.

    Article  Google Scholar 

  77. Yuan Y, Wu F, Bai Y, Li Y, Chen G, Wang Z, Wu C. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 2019;16:411.

    Article  Google Scholar 

  78. Liu H, Yue X, Xing X, Yan Q, Huang J, Petrova V, Zhou H, Liu P. A scalable 3D lithium metal anode. Energy Storage Mater. 2019;16:505.

    Article  Google Scholar 

  79. Xu K, Zhu M, Wu X, Liang J, Liu Y, Zhang T, Zhu Y, Qian Y. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy Storage Mater. 2019;23:587.

    Article  Google Scholar 

  80. Hou Z, Yu Y, Wang W, Zhao X, Di Q, Chen Q, Chen W, Liu Y, Quan Z. Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode. ACS Appl Energy Mater. 2019;11(8):8148.

    Article  CAS  Google Scholar 

  81. Wu S, Zhang Z, Lan M, Yang S, Cheng J, Cai J, Shen J, Zhu Y, Zhang K, Zhang W. Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv Mater. 2018;30(9):1705830.

    Article  CAS  Google Scholar 

  82. Zhang C, Lv W, Zhou G, Huang Z, Zhang Y, Lyu R, Wu H, Yun Q, Kang F, Yang Q. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv Energy Mater. 2018;8(21):1703404.

    Article  CAS  Google Scholar 

  83. Sun C, Li Y, Jin J, Yang J, Wen Z. ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. J Mater Chem A. 2019;7(13):7752.

    Article  CAS  Google Scholar 

  84. Wang LM, Tang ZF, Lin J, He XD, Chen CS, Chen CH. A 3D Cu current collector with a biporous structure derived by a phase inversion tape casting method for stable Li metal anodes. J Mater Chem A. 2019;7(29):17376.

    Article  CAS  Google Scholar 

  85. Shen F, Zhang F, Zheng Y, Fan Z, Li Z, Sun Z, Xuan Y, Zhao B, Lin Z, Gui X, Han X, Cheng Y, Niu C. Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Mater. 2018;13:323.

    Article  Google Scholar 

  86. Fan H, Dong Q, Gao C, Hong B, Lai Y. Powder-sintering derived 3D porous current collector for stable lithium metal anode. Mater Lett. 2019;234:69.

    Article  CAS  Google Scholar 

  87. Hafez AM, Jiao Y, Shi J, Ma Y, Cao D, Liu Y, Zhu H. Stable metal anode enabled by porous lithium foam with superior ion accessibility. Adv Mater. 2018;30(30):1802156.

    Article  CAS  Google Scholar 

  88. Xu Y, Menon AS, Harks PPRML, Hermes DC, Haverkate LA, Unnikrishnan S, Mulder FM. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Mater. 2018;12:69.

    Article  Google Scholar 

  89. Pathek R, Chen K, Gurung A, Reza KM, Bahrami B, Wu F, Chaudhary A, Ghimire N, Zhou B, Zhang WH, Zhou Y, Qiao Q. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode. Adv Energy Mater. 2019;9(36):1901486.

    Article  CAS  Google Scholar 

  90. Zheng G, Lee S, Liang WZ, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014;9(1):618.

    Article  CAS  Google Scholar 

  91. Qu S, Jia W, Wang Z, Li J. ZrO2 thin film protected Li metal anode for improved electrochemical performance. AIP Conf Proc. 2019;2106:020018–0200191.

    Article  CAS  Google Scholar 

  92. Kim Y, Koo D, Ha S, Jung SC, Yim T, Kim H, Oh SK, Choi A, Kang Y, Ryu KH, Jang M, Han YK, Oh SM, Lee KT. Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries. ACS Nano. 2018;12(5):4419.

    Article  CAS  Google Scholar 

  93. Luo J, Fang CC, Wu NL. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv Energy Mater. 2018;8(2):1701482.

    Article  CAS  Google Scholar 

  94. Xu R, Zhang XQ, Cheng Peng HJ, Zhao CZ, Yan C, Huang JQ. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018;28(8):1705838.

    Article  CAS  Google Scholar 

  95. Pu K, Qu X, Zhang X, Hu J, Gu C, Wu Y, Gao M, Pan H, Liu Y. Nanoscaled lithium powders with protection of ionic liquid for highly stable rechargeable lithium metal batteries. Adv Sci. 2019;6(24):1901776.

    Article  CAS  Google Scholar 

  96. Zhang W, Zhang S, Fan L, Gao L, Kong X, Li S, Li J, Hong X, Lu Y, Xu R. Turing the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019;4(3):644.

    Article  CAS  Google Scholar 

  97. Li NW, Shi Y, Yin YX, Zeng XX, Li JY, Li CJ, Wan LJ, Wen R, Guo YG. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem Int Ed. 2017;57(6):1505.

    Article  CAS  Google Scholar 

  98. Qi L, Shang L, Wu K, Qu L, Pei H, Li W, Zhang L, Wu Z, Zhou H, Mckeown NB, Zhang W, Yang Z. Advances in artificial layers for stable lithium metal anodes. Chem Eur J. 2019;25(52):12052.

    Article  CAS  Google Scholar 

  99. Ostadhossein A, Kim SY, Cubuk ED, Qi Y, Van Duin AC. Atomic insight into the lithium storage and diffusion mechanism of SiO2/Al2O3 electrodes of lithium ion batteries: reaxff reactive force field modeling. J Phys Chem A. 2016;120(13):2114.

    Article  CAS  Google Scholar 

  100. Zhang F, Shen F, Fan ZY, Ji X, Zhao B, Sun ZT, Xuan YY, Han XG. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Met. 2018;37(6):510.

    Article  CAS  Google Scholar 

  101. Tian Z, Li N, Xie K, Niu C. Towards high energy-high power dendrite-free lithium metal batteries: the novel hydrated vanadium oxide/graphene silicon nitride/lithium system. J Power Sour. 2019;417:14.

    Article  CAS  Google Scholar 

  102. Sun B, Lang J, Liu K, Hussain N, Fang M, Wu H. Promoting a highly stable lithium metal anode by superficial alloying with an ultrathin indium sheet. Chem Commun. 2019;55(11):1592.

    Article  CAS  Google Scholar 

  103. Lu K, Gao S, Dick R, Sattar Z, Cheng Y. A fast and stable Li metal anode incorporating an Mo6S8 artificial interphase with super Li-ion conductivity. J Mater Chem A. 2019;7(11):6038.

    Article  CAS  Google Scholar 

  104. Li B, Liu Y, Yu Y, Li S, Yang S. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy. 2017;39:654.

    Article  CAS  Google Scholar 

  105. Zhang C, Lan Q, Liu Y, Wu J, Shao H, Zhan H, Yang Y. A dual-layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME-LiNO3 for dendrite-free lithium metal anode. Electrochim Acta. 2019;306:407.

    Article  CAS  Google Scholar 

  106. Wang W, Yue X, Meng J, Wang J, Wang X, Chen H, Shi D, Fu J, Zhou Y, Chen J, Fu Z. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 2019;18:414.

    Article  Google Scholar 

  107. Bai M, Xie K, Hong B, Zhang K, Yuan K, Huang Z, Zhao J, Shen C, Lai Y. Surface modification via a nanosized nitride material to stabilize lithium metal anode. Ceram Int. 2019;45:8045.

    Article  CAS  Google Scholar 

  108. Chen Y, He M, Zhao N, Fu J, Huo H, Zhang T, Li Y, Xu F, Guo X. Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. J Power Sour. 2019;420:15.

    Article  CAS  Google Scholar 

  109. Zhao Y, Wang D, Gao Y, Chen T, Huang Q, Wang D. Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy. 2019;64:103893.

    Article  CAS  Google Scholar 

  110. Liu Y, Tzeng YK, Lin D, Pei A, Lu H, Melosh NA, Shen ZX, Chu S, Cui Y. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule. 2018;2(8):1595.

    Article  CAS  Google Scholar 

  111. Yang J, Hu C, Jia Y, Pang Y, Wang L, Liu W, Sun X. Surface restraint synthesis of an organic-inorganic hybrid layer for dendrite-free lithium metal anode. ACS Appl Mater Interfaces. 2019;11(9):8717.

    Article  CAS  Google Scholar 

  112. Zhong Y, Chen Y, Cheng Y, Fan Q, Zhao H, Shao H, Lai Y, Shi Z, Ke X, Guo Z. Li alginate-based artificial SEI layer for stable lithium metal anodes. ACS Appl Mater Interfaces. 2019;11(41):37726.

    Article  CAS  Google Scholar 

  113. Qi L, Shang L, Wu K, Qu L, Pei H, Li W, Zhang L, Wu Z, Zhou H, Mckeown NB, Zhang W, Yang Z. An Interfacial layer based on polymers of intrinsic microporosity to suppress dendrite growth on Li metal anodes. Chem Eur J. 2019;25(52):12052.

    Article  CAS  Google Scholar 

  114. Yoo DJ, Kim KJ, Choi JW. The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes. Adv. Energy Mater. 2018;8(11):1702744.

    Article  CAS  Google Scholar 

  115. Liu Y, Lin D, Li Y, Chen G, Per A, Nix A, Li Y, Cui Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat Commun. 2018;9:3656.

    Article  CAS  Google Scholar 

  116. Xiao L, Zeng Z, Liu Y, Fang Y, Jiang X, Shao Y, Zhuang L, Ai X, Yang H, Cao Y, Liu J. Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 2019;4(2):483.

    Article  CAS  Google Scholar 

  117. Dong Y, Zhang N, Li C, Zhang Y, Jia M, Wang Y, Zhao Y, Jiao L, Cheng F, Xu J. Fire-retardant phosphate-based electrolytes for high-performance lithium metal batteries. ACS Appl Energy Mater. 2019;2(4):2708.

    Article  CAS  Google Scholar 

  118. Qiu F, Li X, Deng H, Wang D, Mu X, He P, Zhou H. A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li. Adv. Energy Mater. 2019;9(6):1803372.

    Article  CAS  Google Scholar 

  119. Chen S, Zheng J, Mei D, Han KS, Engelhard MH, Zhao W, Xu W, Liu J, Zhang JG. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater. 2018;30(21):1706102.

    Article  CAS  Google Scholar 

  120. Brown ZL, Jurng S, Nguyen CC, Lucht BL. Effect of fluoroethylene carbonate electrolytes on the nanostructure of the solid electrolyte interphase and performance of lithium metal anodes. ACS Appl Energy Mater. 2018;1(7):3057.

    Article  CAS  Google Scholar 

  121. Wang J, Lin F, Jia H, Yang J, Monroe CW, Nu LY. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. Angew Chem Int Ed. 2014;53(38):10099.

    Article  CAS  Google Scholar 

  122. Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson WA, Zhang Y, Zhang JG. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy. 2015;15:135.

    Article  CAS  Google Scholar 

  123. Lang J, Long Y, Qu J, Luo X, Wei H, Huang K, Zhang H, Qi L, Zhang Q, Li Z, Wu H. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 2019;16:85.

    Article  Google Scholar 

  124. Li G, Huang Q, He X, Gao Y, Wang D, Kim SH, Wang D. Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries. ACS Nano. 2018;12(2):1500.

    Article  CAS  Google Scholar 

  125. Cheng X, Xian F, Hu Z, Wang C, Du X, Zhang H, Chen S. Fluorescence probing of active lithium distribution in lithium metal anodes. Angew Chem Int Ed. 2019;131(18):5936.

    Article  CAS  Google Scholar 

  126. Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, Wu X. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy. 2017;2(3):17012.

    Article  CAS  Google Scholar 

  127. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104(10):4303.

    Article  CAS  Google Scholar 

  128. Mandal BK, Padhi AK, Zhong S, Chakraborty S, Filler R. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries. J Power Sour. 2006;162(1):690.

    Article  CAS  Google Scholar 

  129. Jiao S, Zheng J, Li Q, Li X, Engelhard MH, Cao R, Zhang JG, Xu W. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule. 2019;2(1):110.

    Article  CAS  Google Scholar 

  130. Shuangguan X, Xu G, Cui Z, Wang Q, Du X, Chen X, Chen K, Huang S, Jia G, Li F, Wang X, Lu D, Dong S, Cui G. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries. Small. 2019;15(16):1900269.

    Article  CAS  Google Scholar 

  131. Zheng J, Lochala JA, Kwok A, Deng ZD, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv. Sci. 2017;4(8):1700032.

    Article  CAS  Google Scholar 

  132. Suo L, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4(1):1481.

    Article  CAS  Google Scholar 

  133. Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015;350(6263):938.

    Article  CAS  Google Scholar 

  134. Ren Y, Shen Y, Lin Y, Nan CW. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun. 2015;57:27.

    Article  CAS  Google Scholar 

  135. Yang C, Zhang L, Liu B, Xu S, Hamann T, McOwen D, Dai J, Luo W, Gong Y, Wachsman ED, Hu L. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc Natl Acad Sci USA. 2018;115(15):3770.

    Article  CAS  Google Scholar 

  136. Duan J, Wu W, Nolan AM, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv Mater. 2019;31(10):1807243.

    Article  CAS  Google Scholar 

  137. Cheng Q, Li A, Na L, Shuang L, Amirali Z, Li TD, Huang W, Li A, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule. 2019;3(6):1510.

    Article  CAS  Google Scholar 

  138. Sun C, Huang X, Jin J, Lu Y, Wang Q, Yang J, Wen Z. An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries. J Power Sour. 2018;377:36.

    Article  CAS  Google Scholar 

  139. Xu S, McOwen DW, Wang C, Zhang L, Luo W, Chen C, Li Y, Gong Y, Dai J, Kuang Y, Yang Y, Yang C, Hamann TR, Wachsman ED, Hu L. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode. Nano Lett. 2018;18(6):3926.

    Article  CAS  Google Scholar 

  140. Liu M, Cheng Z, Qian K, Verhallen T, Wang C, Wagemaker M. Efficient Li-metal plating/stripping in carbonate electrolytes using a LiNO3-gel polymer electrolyte, monitored by operando neutron depth profiling. Chem Mater. 2019;31(12):4564.

    Article  CAS  Google Scholar 

  141. Zhou J, Qian T, Liu J, Wang M, Zhang L, Yan C. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 2019;19(5):3066.

    Article  CAS  Google Scholar 

  142. Wu H, Cao Y, Su H, Wang C. Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode. Angew Chem Int Ed. 2018;57(5):1361.

    Article  CAS  Google Scholar 

  143. Martinez AIP, Aguesse F, Otaegui L, Schneider M, Roters A, Llordés A, Buannic L. The cathode composition, a key player in the success of Li-metal solid-state batteries. J Phys Chem C. 2019;123(6):3270.

    Article  CAS  Google Scholar 

  144. Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater. 2019;31(12):1807789.

    Article  CAS  Google Scholar 

  145. Guo Q, Han Y, Wang H, Xiong S, Sun W, Zheng C. Novel synergistic coupling composite chelating copolymer/LAGP solid electrolyte with optimized interface for dendrite-free solid Li-metal battery. Electrochim Acta. 2019;296:693.

    Article  CAS  Google Scholar 

  146. Kisu K, Kim S, Oguchi H, Toyama N, Orimo SI. Interfacial stability between LiBH4-based complex hydride solid electrolytes and Li metal anode for all-solid-state Li batteries. J Power Sour. 2019;436:226821.

    Article  CAS  Google Scholar 

  147. Zhang Y, Lv W, Huang Z, Zhou G, Deng Y, Zhang J, Zhang C, Hao B, Qi Q, He YB, Kang F, Yang QH. An air-stable and waterproof lithium metal anode enabled by wax composite packaging. Sci Bull. 2019;64(13):910.

    Article  CAS  Google Scholar 

  148. Wu H, Wang J, Zhao Y, Zhang X, Xu L, Liu L, Cui Y, Cui Y, Li C. A branched cellulose-reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustain Energy Fuels. 2019;3(10):2642.

    Article  CAS  Google Scholar 

  149. Shen X, Li Y, Qian T, Liu J, Zhou J, Yan C, Goodenough JB. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun. 2019;10:900.

    Article  CAS  Google Scholar 

  150. Zhou F, Li Z, Lu Y, Shen B, Guan Y, Wang XX, Yin YC, Yin YC, Zhu BS, Lu LL, Ni Y, Cui Y, Yao NB, Yu SH. Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries. Nat Commun. 2019;10:2482.

    Article  Google Scholar 

  151. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):16103.

    Article  CAS  Google Scholar 

  152. Broek JVD, Afyon S, Rupp LMJ. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv Energy Mater. 2016;6(19):1600736.

    Article  CAS  Google Scholar 

  153. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc. 2016;138(30):9385.

    Article  CAS  Google Scholar 

  154. Han X, Gong Y, Fu K, He X, Hitz TG, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572.

    Article  CAS  Google Scholar 

  155. Fu KK, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Lacey SD, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Toward garnet electrolyte-based Li metal batteries: an ultrathin highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv. 2017;3(4):e1601659.

    Article  CAS  Google Scholar 

  156. Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Lux SF, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys. 2014;16(34):18294.

    Article  CAS  Google Scholar 

  157. Porz L, Swamy T, Sheldon BW, Rettenwander D, Fromling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater. 2017;7(20):1701003.

    Article  CAS  Google Scholar 

  158. Krauskopf T, Mogwitz B, Rosenbach C, Zeier WG, Janek J. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv Energy Mater. 2019;9(44):1902568.

    Article  CAS  Google Scholar 

  159. Krauskopf T, Hartmann H, Zeier WG. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces. 2019;11(15):14463.

    Article  CAS  Google Scholar 

  160. Shi Y, Li B, Zhu Q, Shen K, Tang W, Xiang Q, Chen W, Liu C, Luo J, Yang S. MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv Energy Mater. 2020;10(9):1903534.

    Article  CAS  Google Scholar 

  161. Xiao L, Li EW, Yi JY, Meng W, Deng BH, Liu JP. Enhanced performance of solid-state Li-O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Met. 2018;37(6):527.

    Article  CAS  Google Scholar 

  162. Wang C, Bai G, Yang Y, Liu X, Shao H. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019;12(1):217.

    Article  CAS  Google Scholar 

  163. Mayers MZ, Kaminski JW, Miller TF III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C. 2012;116(50):26214.

    Article  CAS  Google Scholar 

  164. Li Q, Li LL, Lu YY, He Y. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries. Sci Adv. 2017;3:e1701246.

    Article  CAS  Google Scholar 

  165. Yang H, Fey EO, Trimm BD, Dimitrov N, Whittingham MS. Effects of Pulse Plating on lithium electrodeposition, morphology and cycling efficiency. J Power Sour. 2014;272:900.

    Article  CAS  Google Scholar 

  166. Aryanfar A, Brooks D, Merinov BV, Goddard WA, Colussi AJ, Goffman MR. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations. J Phys Chem Lett. 2014;5(10):1721.

    Article  CAS  Google Scholar 

  167. Li NW, Yin Y, Du X, Zhang X, Yuan Z, Niu H, Cao R, Fan W, Zhang Y, Xu W, Li C. Triboelectric nanogenerator-enabled dendrite-free lithium metal batteries. ACS Appl Mater Interfaces. 2019;11(1):802.

    Article  CAS  Google Scholar 

  168. Shen K, Wang Z, Bi X, Ying Y, Zhang D, Jin C, Hou G, Cao H, Wu L, Zheng G, Tang Y, Tao X, Lu J. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv Energy Mater. 2019;9(20):1900260.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (51831009), the National Materials Genome Project (2016YFB0700600) and the National Youth Top-Notch Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, KC., Zhang, X., Qu, XL. et al. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 39, 616–635 (2020). https://doi.org/10.1007/s12598-020-01432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01432-2

Keywords

Navigation