Electronic behavior of native oxide films on Ti and TiN during 90-day immersion in electrolytes with different pH levels


This work presents the electronic behavior of Ti and TiN thin films when exposed to electrolytes with pH levels of 2, 7 and 13 for 90 days. Staircase potentio-electrochemical impedance spectroscopy tests were performed on the 100-nm Ti and TiN monolithic films, and Mott–Schottky analysis of these tests was used to determine the films’ semiconductive behavior and changes in the donor/acceptor density. In addition, the flat-band potential of each film’s surface oxide was also characterized. No attempt was made to control oxide formation, and therefore, these tests reflected the native surfaces of these films. While the TiN films exhibited n-type semiconductivity in all electrolytes, the Ti films only showed n-type behavior in the acidic (pH = 2) and neutral (pH = 7) electrolytes. The semiconductivity of the Ti films transitioned to p-type during exposure to the basic electrolyte (pH = 13) after reaching 60 days. Furthermore, there was a significant increase in the donor densities for both Ti and TiN films when immersed in the basic electrolyte relative to the acidic and neutral electrolytes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. [1]

    Fernández-Domene RM, Blasco-Tamarit E, García-García DM, García Antón J. Passivity breakdown of titanium in LiBr solutions. J Electrochem Soc. 2013;161(1):C25.

    Google Scholar 

  2. [2]

    Pan J, Leygraf C, Thierry D, Ektessabi AM. Corrosion resistance for biomedical applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J Biomed Mater Res. 1997;35(3):309.

    CAS  Google Scholar 

  3. [3]

    Jiang Z, Dai X, Middleton H. Investigation on passivity of titanium under steady-state conditions in acidic solutions. Mater Chem Phys. 2011;126(3):859.

    CAS  Google Scholar 

  4. [4]

    Boxley CJ, White HS, Gardner CE, Macpherson JV. Nanoscale imaging of the electronic conductivity of the native oxide film on titanium using conducting atomic force microscopy. J Phys Chem B. 2003;107(36):9677.

    CAS  Google Scholar 

  5. [5]

    Wypych A, Bobowska I, Tracz M, Opasinska A, Kadlubowski S, Krzywania-Kaliszewska A, Grobelny J, Wojciechowski P. Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J Nanomater. 2014. https://doi.org/10.1155/2014/124814.

    Article  Google Scholar 

  6. [6]

    Choi YK. Thin titanium dioxide film electrodes prepared by thermal oxidation. J Electrochem Soc. 1992;139(7):1803.

    CAS  Google Scholar 

  7. [7]

    Munirathinam B, Narayanan R, Neelakantan L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions. Thin Solid Films. 2016;598:260.

    CAS  Google Scholar 

  8. [8]

    Van de Krol R, Goossens A, Schoonman J. Mott-Schottky analysis of nanometer-scale thin-film anatase TiO2. J Electrochem Soc. 1997;144(5):1723.

    Google Scholar 

  9. [9]

    Weber MF. Effect of hydrogen on the dielectric and photoelectrochemical properties of sputtered TiO2 films. J Electrochem Soc. 1982;129(9):2022.

    CAS  Google Scholar 

  10. [10]

    Wang ZW, Shu DJ, Wang M, Ming NB. Strain effect on diffusion properties of oxygen vacancies in bulk and subsurface of rutile TiO2. Surf Sci. 2012;606(3–4):186.

    CAS  Google Scholar 

  11. [11]

    Schmidt AM, Azambuja DS, Martini EMA. Semiconductive properties of titanium anodic oxide films in McIlvaine buffer solution. Corros Sci. 2006;48(10):2901.

    CAS  Google Scholar 

  12. [12]

    Kudelka S, Michaelis A, Schultze JW. Effect of texture and formation rate on ionic and electronic properties of passive layers on Ti single crystals. Electrochim Acta. 1996;41(6):863.

    CAS  Google Scholar 

  13. [13]

    Kozlowski M, Smyrl WH. Local film thickness and photoresponse of thin anodic TiO2 films on polycrystalline titanium. Electrochim Acta. 1989;34(12):1763.

    CAS  Google Scholar 

  14. [14]

    Matykina E, Arrabal R, Skeldon P, Thompson GE, Habazaki H. Influence of grain orientation on oxygen generation in anodic titania. Thin Solid Films. 2008;516(8):2296.

    CAS  Google Scholar 

  15. [15]

    Schneider M, Schroth S, Schilm J, Michaelis A. Micro-EIS of anodic thin oxide films on titanium for capacitor applications. Electrochim Acta. 2009;54(9):2663.

    CAS  Google Scholar 

  16. [16]

    Rudenja S, Leygraf C, Pan J, Kulu P, Talimets E, Mikli V. Duplex TiN coatings deposited by arc plating for increased corrosion resistance of stainless steel substrates. Surf Coat Technol. 1999;114(2–3):129.

    CAS  Google Scholar 

  17. [17]

    Kofstad P. Nonstoichiometry, Diffusion and Electrical Conductivity of Binary Metal Oxides. New York: Wiley; 1972. 382.

    Google Scholar 

  18. [18]

    Blumenthal RN, Baukus J, Hirthe WM. Studies of defect structure of nonstoichiometric rutile TiO2-x. J Electrochem Soc. 1967;114(2):172.

    CAS  Google Scholar 

  19. [19]

    Nowotny J, Bak T, Nowotny MK, Sheppard LR. Titanium dioxide for solar-hydrogen II: defect chemistry. Int J Hydrogen Energy. 2007;32(14):2630.

    CAS  Google Scholar 

  20. [20]

    Wang S, Pan L, Song J, Mi W, Zou J, Wang L, Zhang X. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc. 2015;137(8):2975.

    CAS  Google Scholar 

  21. [21]

    Nowotny MK, Bak T, Nowotny J, Sorrell CC. Titanium vacancies in nonstoichiometric TiO2 single crystal. Physica Status Solidi. 2005;242(11):R88.

    CAS  Google Scholar 

  22. [22]

    Nowotny MK, Bogdanoff P, Dittrich T, Fiechter S, Fujishima A, Tributsch H. Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater Lett. 2010;8(30):928.

    Google Scholar 

  23. [23]

    Bhowmik B, Dutta K, Hazra A, Bhattacharyya P. Low temperature acetone detection by p-type nano-titania thin film: equivalent circuit model and sensing mechanism. Solid-State Electron. 2014;99:84.

    CAS  Google Scholar 

  24. [24]

    Bak T, Nowotny J, Nowotny MK. Defect disorder of titanium dioxide. J Phys Chem B. 2006;110:21560.

    CAS  Google Scholar 

  25. [25]

    Nowotny MK, Bak T, Nowotny J. Electrical properties and defect chemistry of TiO2 single crystal IV. Prolonged oxidation kinetics and chemical diffusion. J Phys Chem B. 2006;110(33):13602.

    Google Scholar 

  26. [26]

    Na-Phattalung S, Smith MF, Kim K, Du M, Wei S, Zhang SB, Limpijumnong S. First-principles study of native defects in anatase TiO2. Phys Rev B. 2006;73(12):125205.

    Google Scholar 

  27. [27]

    Ruiz A, Cornet A, Sakai G, Shimanoe K, Morante JR, Yamazoe N. Preparation of Cr-doped TiO2 thin film of p-type conduction for gas sensor application. Chem Lett. 2002;31(9):892.

    Google Scholar 

  28. [28]

    Cao J, Zhang Y, Liu L, Ye J. A p-type Cr-doped TiO2 photo-electrode for photo-reduction. Chem Commun. 2013;49(33):3440.

    CAS  Google Scholar 

  29. [29]

    Solovan MN, Brus VV, Maistruk EV, Maryanchuk PD. Electrical and optical properties of TiN thin films. Inorg Mater. 2014;50(1):46.

    Google Scholar 

  30. [30]

    Zhao G, Zhang T, Zhang T, Wang J, Han G. Electrical and optical properties of titanium nitride coatings prepared by atmospheric pressure chemical vapor deposition. J Non-Cryst Solids. 2008;354(12–13):1272.

    CAS  Google Scholar 

  31. [31]

    Rudenja S, Pan J, Wallinder IO, Leygraf C, Kulub P. Passivation and anodic oxidation of duplex TiN coating on stainless steel. J Electrochem Soc. 1999;146(11):4082.

    CAS  Google Scholar 

  32. [32]

    Schultz BM, Unocic RR, DesJardins JD, Kennedy MS. Formation of a metallic amorphous layer during the sliding wear of Ti/TiN nanolaminates. Tribol Lett. 2014;55(2):219.

    CAS  Google Scholar 

  33. [33]

    Morrison SR. Electrochemistry at Semiconductor and Oxidized Metal Electrodes. New York: Plenum Press; 1981. 401.

    Google Scholar 

  34. [34]

    Sukhotin AM, Grilikhes MS, Lisovaya EV. The influence of passivation on the kinetics of the dissolution of iron-I. Outer layer of the passivating film as a heavy doped thin semiconductor and M-S equation. Electrochim Acta. 1989;34(2):109.

    CAS  Google Scholar 

  35. [35]

    Samsonov GV. The Oxide Handbook. New York: Springer; 1973. 524.

    Google Scholar 

  36. [36]

    Chakraborty J, Kumar K, Ranjan R, Chowdhury SG, Singh SR. Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 2011;59(7):2615.

    CAS  Google Scholar 

  37. [37]

    Fazio M, Vega D, Kleiman A, Colombo D, Arias LMF, Márquez A. Study of the structure of titanium thin films deposited with a vacuum arc as a function of the thickness. Thin Solid Films. 2015;593:110.

    CAS  Google Scholar 

  38. [38]

    Ibrahim MAM, Pongkao D, Yoshimura M. The electrochemical behavior and characterization of the anodic oxide film formed on titanium in NaOH solutions. J Solid State Electrochem. 2002;6(5):341.

    CAS  Google Scholar 

  39. [39]

    Hefny MM, Mazhar AA, EI-Basiouny MS. Dissolution behavior of titanium oxide in H2SO4 and NaOH from Impedance and potential measurements. Br Corros J. 1982;17(1):38.

    CAS  Google Scholar 

  40. [40]

    Schockley W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst Tech J. 1949;28(3):435.

    Google Scholar 

  41. [41]

    Sze SM, Ng KK. Physics of Semiconductor Devices. Hoboken: Wiley; 2007. 832.

    Google Scholar 

  42. [42]

    Najaf-Tomaraei G, Poursaee A, Kennedy MS. Electrochemical behavior of titanium and titanium nitride thin films as a function of electrolyte pH. In: Proceedings of Corrosion 2018, NACE International. Phoenix. AZ. 2018. 11612.

  43. [43]

    Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sources. 2008;181(1):46.

    CAS  Google Scholar 

  44. [44]

    Gerischer H. Neglected problems in the pH dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers. Electrochim Acta. 1989;34(8):1005.

    Google Scholar 

  45. [45]

    Tomkiewicz M. The potential distribution at the TiO2 aqueous electrolyte interface. Journal of Electrochemical Society. 1979;126(9):1505.

    CAS  Google Scholar 

  46. [46]

    Van de Krol R. Principles of photoelectrochemical cells. In: Van de Krol R, Grätzel M, editors. Photoelectrochemical Hydrogen Production. New York: Springer; 2012. 320.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Amir Poursaee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poursaee, A., Najaf-Tomaraei, G. & Kennedy, M.S. Electronic behavior of native oxide films on Ti and TiN during 90-day immersion in electrolytes with different pH levels. Rare Met. 40, 582–589 (2021). https://doi.org/10.1007/s12598-020-01386-5

Download citation


  • Ti
  • TiN
  • Thin films
  • Mott–Schottky analysis
  • Semiconductivity