Experimental study and cellular automaton simulation on solidification microstructure of Mg–Gd–Y–Zr alloy


The solidification microstructure of Mg–Gd–Y–Zr alloy was investigated via an experimental study and cellular automaton (CA) simulation. In this study, step-shaped castings were produced, and the temperature variation inside the casting was recorded using thermocouples during the solidification process. The effects of the cooling rate and Zr content on the grain size of the Mg–Gd–Y–Zr alloy were studied. The results showed that the grain size decreased with an increase in the cooling rate and Zr content. Based on the experimental data, a quantitative model for calculating the heterogeneous nucleation rate was developed, and the model parameters were determined. The evolution of the solidification microstructure was simulated using the CA method, where the quantitative nucleation model was used and a solute partition coefficient was introduced to deal with the solute trapping in front of the solid–liquid (S/L) interface. The simulation results of the grain size were in good agreement with the experimental data. The simulation also showed that the fraction of the eutectics decreased with an increasing cooling rate in the range of 2.6–11.0 °C·s−1, which was verified indirectly by the experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. [[1]

    Liu H, Ju J, Yang XW, Li YH, Jiang JH, Ma AB. Microstructure and mechanical property of Mg–10Gd–2Y–1.5 Zn–0.5 Zr alloy processed by eight-pass equal-channel angular pressing. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1022-1.

    Article  Google Scholar 

  2. [2]

    Zhang K, Li X, Li Y, Yuan J, Liu X, Wang S. Properties of ZM51 magnesium alloys with heat treatments. Chin J Rare Met. 2019;43(6):585.

    Google Scholar 

  3. [3]

    Han Z, Pan H, Li Y, Luo AA, Sachdev AK. Study on pressurized solidification behavior and microstructure characteristics of squeeze casting magnesium alloy AZ91D. Metall Mater Trans B. 2015;46(1):328.

    CAS  Article  Google Scholar 

  4. [4]

    Han GM, Han ZQ, Luo AA, Liu BC. Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy. J Alloys Compd. 2015;641:56.

    CAS  Article  Google Scholar 

  5. [5]

    Zheng L, Liu C, Wan Y, Yang P, Shu X. Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr (wt%) alloy. J Alloys Compd. 2011;509(35):8832.

    CAS  Article  Google Scholar 

  6. [6]

    Xu C, Xu SW, Zheng MY, Wu K, Wang ED, Kamado S, Wang GJ, Lv XY. Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. J Alloys Compd. 2012;524:546.

    Article  Google Scholar 

  7. [7]

    Wu K, Wang X, Xiao L, Li Z, Han Z. Experimental study on the effect of cooling rate on the secondary phase in as-cast Mg–Gd–Y–Zr alloy. Adv Eng Mater. 2018;20(3):1700717.

    Article  Google Scholar 

  8. [8]

    Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater Sci Eng, A. 2013;559:364.

    CAS  Article  Google Scholar 

  9. [9]

    Huo L, Han ZQ, Liu BC. Effect of microstructure on tensile and fatigue properties of cast Mg–10Gd–2Y–0.5Zr alloy. Int J Cast Met Res. 2009;22(1–4):123.

    CAS  Article  Google Scholar 

  10. [10]

    Zhou J, Yang Y, Tong W, Wang J, Fu J, Wang B. Effect of cooling rate on the solidified microstructure of Mg-Gd-Y-Zr alloy. Rare Metal Mater Eng. 2010;39(11):1899.

    CAS  Article  Google Scholar 

  11. [11]

    Pang S, Wu G, Liu W, Sun M, Zhang Y, Liu Z, Ding W. Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg–10Gd–3Y–0.5Zr magnesium alloy. Mater Sci Eng, A. 2013;562:152.

    CAS  Article  Google Scholar 

  12. [12]

    Pang S, Wu G, Liu WC, Zhang L, Zhang Y, Conrad H, Ding WJ. Influence of cooling rate on solidification behavior of sand-cast Mg–10Gd–3Y–0.4Zr alloy. Trans Nonferrous Met Soc China. 2014;24(11):3413.

    CAS  Article  Google Scholar 

  13. [13]

    Lee YC, Dahle AK, StJohn DH. The role of solute in grain refinement of magnesium. Metall Mater Trans A. 2000;31(11):2895.

    Article  Google Scholar 

  14. [14]

    Qian M, Das A. Grain refinement of magnesium alloys by zirconium: formation of equiaxed grains. Scr Mater. 2006;54(5):881.

    CAS  Article  Google Scholar 

  15. [15]

    Sun M, Wu G, Wang W, Ding W. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Mater Sci Eng, A. 2009;523(1–2):145.

    Article  Google Scholar 

  16. [16]

    Sun M, Easton MA, StJohn DH, Wu G, Abbott TB, Ding W. Grain refinement of magnesium alloys by Mg–Zr master alloys: the role of alloy chemistry and Zr particle number density. Adv Eng Mater. 2013;15(5):373.

    CAS  Article  Google Scholar 

  17. [17]

    Jiang L, Liu W, Wu G, Ding W. Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg–Gd–Y–Zr alloy. Mater Sci Eng, A. 2014;612:293.

    CAS  Article  Google Scholar 

  18. [18]

    Zhang X, Zhao J, Jiang H, Zhu M. A three-dimensional cellular automaton model for dendritic growth in multi-component alloys. Acta Mater. 2012;60(5):2249.

    CAS  Article  Google Scholar 

  19. [19]

    Wu M, Xiong S. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method. Acta Metall Sin. 2010;46(12):1534.

    CAS  Google Scholar 

  20. [20]

    Su B, Han Z, Liu B. Cellular automaton modeling of austenite nucleation and growth in hypoeutectoid steel during heating process. ISIJ Int. 2013;53(3):527.

    CAS  Article  Google Scholar 

  21. [21]

    Han G, Han Z, Luo AA, Liu B. Three-dimensional phase-field simulation and experimental validation of β-Mg17Al12 phase precipitation in Mg–Al-based alloys. Metall Mater Trans A. 2015;46(2):948.

    CAS  Article  Google Scholar 

  22. [22]

    Han Z, Han G, Luo AA, Liu B. Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Comput Mater Sci. 2015;101:248.

    CAS  Article  Google Scholar 

  23. [23]

    Beltran-Sanchez L, Stefanescu DM. Growth of solutal dendrites-a cellular automaton model. Int J Cast Met Res. 2003;15(3):251.

    Article  Google Scholar 

  24. [24]

    Beltran-Sanchez L. Stefanescu DM Growth of solutal dendrites: a cellular automaton model and its quantitative capabilities. Metall Mater Trans A. 2003;34(2):367.

    Article  Google Scholar 

  25. [25]

    Han G, Han Z, Luo AA, Sachdev AK, Liu B. A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Scripta Mater. 2013;68(9):691.

    CAS  Article  Google Scholar 

  26. [26]

    Yin H, Felicelli SD. A cellular automaton model for dendrite growth in magnesium alloy AZ91. Model Simul Mater Sci Eng. 2009;17:75011.

    Article  Google Scholar 

  27. [27]

    Zhang L, Wang YM, Zhang CB, Wang SQ, Ye HQ. A cellular automaton model of the transformation from austenite to ferrite in low carbon steels. Model Simul Mater Sci Eng. 2003;11:791.

    CAS  Article  Google Scholar 

  28. [28]

    Michelic SC, Thuswaldner JM, Bernhard C. Polydimensional modelling of dendritic growth and microsegregation in multicomponent alloys. Acta Mater. 2010;58(7):2738.

    CAS  Article  Google Scholar 

  29. [29]

    Zhu MF, Cao W, Chen SL, Hong CP, Chang YA. Modeling of microstructure and microsegregation in solidification of multi-component alloys. J Phase Equilib Diffus. 2007;28(1):130.

    Article  Google Scholar 

  30. [30]

    Luo S, Zhu MY. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method. Comput Mater Sci. 2013;71:10.

    Article  Google Scholar 

  31. [31]

    Zhao Y, Qin RS, Chen DF. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification. J Cryst Growth. 2013;377:72.

    CAS  Article  Google Scholar 

  32. [32]

    Sobolev SL. Rapid solidification under local nonequilibrium conditions. Phys Rev E. 1997;55(6):6845.

    CAS  Article  Google Scholar 

  33. [33]

    Pineau A, Guillemot G, Tourret D, Karma A, Gandin CA. Growth competition between columnar dendritic grains-cellular automaton versus phase field modeling. Acta Mater. 2018;155:286.

    CAS  Article  Google Scholar 

  34. [34]

    Wang H, Liu F, Yang W, Chen Z, Yang G, Zhou Y. Solute trapping model incorporating diffusive interface. Acta Mater. 2008;56(4):746.

    CAS  Article  Google Scholar 

  35. [35]

    Hillert M. Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater. 1999;47(18):4481.

    CAS  Article  Google Scholar 

  36. [36]

    Liu Y, Xiao L, Zou W, Li B. Optimization of mechanical properties of GW63K heat-resistant Mg alloy. Hot Work Technol. 2015;24:210.

    Google Scholar 

  37. [37]

    Christian JW. The Theory of Transformation in Metals and Alloys. 2nd ed. Oxford: Pergamon Press; 1975. 624.

    Google Scholar 

  38. [38]

    Huo L, Han Z, Liu B. Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh. Acta Metall Sin. 2009;45(12):1414.

    CAS  Google Scholar 

  39. [39]

    Aziz MJ. Model for solute redistribution during rapid solidification. J Appl Phys. 1982;53(2):1158.

    CAS  Article  Google Scholar 

Download references


This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0701204), the National Science and Technology Major Project of China (No. 2017ZX04006001) and the National Natural Science Foundation of China (No. U1737208).

Author information



Corresponding author

Correspondence to Zhi-Qiang Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Wang, FF., Wu, KY. et al. Experimental study and cellular automaton simulation on solidification microstructure of Mg–Gd–Y–Zr alloy. Rare Met. 40, 1–9 (2021). https://doi.org/10.1007/s12598-019-01355-7

Download citation


  • Solidification microstructure
  • Mg–Gd–Y–Zr alloy
  • Cooling rate
  • Zr content
  • Nucleation
  • Cellular automaton