Synthesis and electrochemical properties of spherically shaped LiVPO4F/C cathode material by a spray drying–roasting method

Abstract

LiVPO4F has attracted increasing research interest in the field of Li-ion batteries due to its high working voltage platform and high theoretical energy density. However, the construction of stable LiVPO4F cathode material with excellent electrochemical properties is still a major challenge. Herein, we successfully synthesized spherically shaped LiVPO4F/C via a spray drying–roasting method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicate that the well crystallized LiVPO4F/C with triclinic structure shows spherical morphology with an average diameter of 1–3 μm. The spherically shaped LiVPO4F/C delivers a discharge capacity of 137.9 mAh·g−1 at 0.1C rate in the range of 3.0–4.5 V and remains 91.4% capacity retention of its initial discharge capacity after 50 cycles. These results reveal that spray drying–roasting method is a promising approach to synthesize spherically shaped LiVPO4F/C cathode material with stable crystal structure and excellent performance.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. [1]

    Mai L, Tian X, Xu X, Chang L, Xu L. Nanowire electrodes for electrochemical energy storage devices. Chem Rev. 2014;114(23):11828.

    CAS  Article  Google Scholar 

  2. [2]

    Li Y, Guo C, Yue L, Qu W, Chen N, Dai Y, Chen R, Wu F. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    CAS  Article  Google Scholar 

  3. [3]

    Luo W, Gaumet J, Mai L. Antimony-based intermetallic compounds for lithium ion battery and sodium ion battery: synthesis, construction and application. Rare Met. 2017;36(5):321.

    CAS  Article  Google Scholar 

  4. [4]

    Li T, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    CAS  Article  Google Scholar 

  5. [5]

    Wu L, Zheng J, Wang L, Xiong X, Shao Y, Wang G, Wang J, Zhong S, Wu M. PPy-encapsulated SnS2 nanosheets stabilized by defects on TiO2 support as durable anode material for lithium ion battery. Angew Chem Int Edit. 2019;58(3):811.

    CAS  Article  Google Scholar 

  6. [6]

    Li X, Jiang Y, Li X, Jiang H, Liu J, Feng J, Lin S, Guan X. Electrochemical properties of LiFePO4/C composite cathode with different carbon sources. Rare Met. 2018;36(9):743.

    Article  Google Scholar 

  7. [7]

    Li Y, Bai Y, Yang Z, Wang Z, Chen S, Wu F, Wu C. Reorganizing the electronic structure of Li3V2(PO4)3 using polyanion (BO3)3−: towards better electrochemical performances. Rare Met. 2017;36(5):397.

    CAS  Article  Google Scholar 

  8. [8]

    Eshraghi N, Caes S, Mahmoud A, Cloots R, Vertruyen B, Boschini F. Sodium vanadium(III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles. Electrochim Acta. 2017;228:319.

    CAS  Article  Google Scholar 

  9. [9]

    Li S, Yang Y, Xie M, Zhang Q. Synthesis and electrochemical performances of high-voltage LiNi0.5Mn1.5O4 cathode materials prepared by hydroxide co-precipitation method. Rare Met. 2017;36(4):277.

    Article  Google Scholar 

  10. [10]

    Zhou H, Zhu Y, Li J, Sun W, Liu Z. Electrochemical performance of Al2O3 pre-coated spinel LiMn2O4. Rare Met. 2019;38(2):128.

    CAS  Article  Google Scholar 

  11. [11]

    Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Edit. 2017;57(1):102.

    Article  Google Scholar 

  12. [12]

    Vertruyen B, Eshraghi N, Piffet C, Bodart J, Mahmoud A, Boschini F. Spray-drying of electrode materials for lithium- and sodium-ion batteries. Materials. 2018;11(7):1076.

    Article  Google Scholar 

  13. [13]

    Xu C, Wang Y, Li L, Wang Y, Jiao L, Yuan H. Hydrothermal synthesis mechanism and electrochemical performance of LiMn0.6Fe0.4PO4 cathode material. Rare Met. 2019;38(1):29.

    CAS  Article  Google Scholar 

  14. [14]

    Zhao Y, Ma C, Li Y. One-step microwave preparation of a Mn3O4 nanoparticles/exfoliated graphite composite as superior anode materials for Li-ion batteries. Chem Phys Lett. 2017;673:19.

    CAS  Article  Google Scholar 

  15. [15]

    Huang H, Faulkner T, Saidi MY. Lithium metal phosphates, power and automotive applications. J Power Sources. 2009;189(1):748.

    CAS  Article  Google Scholar 

  16. [16]

    Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL, Barker J. LiVPO4F: a new active material for safe lithium-ion batteries. Solid State Ion. 2006;177(26–32):2635.

    CAS  Article  Google Scholar 

  17. [17]

    Reddy MV, Rao GVS, Chowdar BVR. Long-term cycling studies on 4 V-cathode, lithium vanadium fluorophosphates. J Power Sources. 2010;195(17):5768.

    CAS  Article  Google Scholar 

  18. [18]

    Barker J, Saidi MY, Swoyer JL. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate. J Electrochem Soc. 2003;150(10):A1394.

    CAS  Article  Google Scholar 

  19. [19]

    Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL. Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sources. 2005;146(1–2):516.

    CAS  Article  Google Scholar 

  20. [20]

    Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL. Performance evaluation of lithium vanadium fluorophosphate in lithium metal and lithium-ion cells. J Electrochem Soc. 2005;152(9):A1776.

    CAS  Article  Google Scholar 

  21. [21]

    Liu J, Zhong S, Wu L, Wan K, Lv F. Electrochemical performance of LiVPO4F/C synthesized by different methods. Trans Nonferr Metal Soc. 2012;22(S1):s157.

    Article  Google Scholar 

  22. [22]

    Shi Y, Luo J, Wang R, Zhao J, Xie Q. Investigation of carbon-decorated LiVPO4F nanoparticles as cathode for lithium-ion batteries with enhanced rate capability and cyclic performance. Solid State Ion. 2018;327:71.

    CAS  Article  Google Scholar 

  23. [23]

    Wu J, Xu Y, Chen Y, Li L, Wang H, Zhao J. Towards a high-rate and long-life LiVPO4F/C cathode material for lithium ion batteries by potassium and zirconium co-doping. J Power Sources. 2018;401:142.

    CAS  Article  Google Scholar 

  24. [24]

    Wu J, Xu Y, Sun X, Wang C, Zhang B, Zhao J. The multiple effects of potassium doping on LiVPO4F/C composite cathode material for lithium ion batteries. J Power Sources. 2018;396:155.

    CAS  Article  Google Scholar 

  25. [25]

    Fan C, Wen Z, Xiao R, Li Q, Gong Y, Zeng T. LiVPO4F/C cathode synthesized by a fast chemical reduction method for lithium-ion batteries. Mater Lett. 2016;170:35.

    CAS  Article  Google Scholar 

  26. [26]

    Zhang B, Han Y, Zheng J, Shen C, Ming L, Zhang J. A novel lithium vanadium fluorophosphate nanosheet with uniform carbon coating as a cathode material for lithium-ion batteries. J Power Sources. 2014;264:123.

    CAS  Article  Google Scholar 

  27. [27]

    Wang Y, Shao X, Xu H, Xie M, Deng S, Wang H, Liu J, Yan H. Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries. J Power Sources. 2013;226:140.

    CAS  Article  Google Scholar 

  28. [28]

    Wu L, Lu J, Wei G, Wang P, Ding H, Zheng J, Li X, Zhong S. Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim Acta. 2014;146:288.

    CAS  Article  Google Scholar 

  29. [29]

    Piao Y, Qin Y, Ren Y, Heald SM, Sun C, Zhou D, Polzin BJ, Trask SE, Amine K, Wei Y, Chen G, Bloom I, Chen Z. A XANES study of LiVPO4F: a factor analysis approach. Phys Chem Chem Phys. 2014;16:3254.

    CAS  Article  Google Scholar 

  30. [30]

    Zhan T, Jiang W, Li C, Luo X, Lin G, Li Y, Xiao S. High performed composites of LiFePO4/3DG/C based on FePO4 by hydrothermal method. Electrochim Acta. 2017;246:322.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (51774207, 51774210 and 51904194), the Prospective Applied Research from the Technological Innovation Project of Key Industry of Suzhou (SYG201931), Natural Science Research of Jiangsu Higher Education Institutions of China (19KJB450001) and Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials (EMFM20182202).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ling Wu or Sheng-Kui Zhong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sui, YL., Wu, L., Hong, W. et al. Synthesis and electrochemical properties of spherically shaped LiVPO4F/C cathode material by a spray drying–roasting method. Rare Met. 40, 1–6 (2021). https://doi.org/10.1007/s12598-019-01340-0

Download citation

Keywords

  • Lithium-ion batteries
  • Cathode materials
  • LiVPO4F/C
  • Spray drying–roasting
  • Electrical properties