Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment

Abstract

The goal of this study was to synthesize nickel oxide nanoparticles (NiO-NPs) by the sol–gel method, which involved the use of salvia macrosiphon Boiss plant extract, Ni(NO3)2·6H2O as a capping agent, and a nickel precursor, respectively. The synthesized NiO-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–Vis) spectrophotometer, X-ray diffraction (XRD), field electron scanning electron microscopy (FESEM)/energy-dispersive X-ray spectroscopy (EDX), thermo-gravimetric analysis/differential thermal analysis (TGA/DTA) and vibrating sample magnetometer (VSM) analyzes. Also, according to the results of UV–Vis, the gap band of nanoparticles was calculated to be in the range of about 2.9–3.9 eV. The photocatalytic activity of nanoparticles on methylene blue (MB) degradation was investigated and according to the results, about 80% MB was apparently degraded in the presence of NiO-NPs under UV-A light (11 W) after 5 h in pH ~ 11. We have evaluated the cytotoxicity of NiO-NPs on the multiple tumor cells by materials method, and all the utilized concentrations were observed to cause non-toxic effects; therefore, it can be suggested that these samples have the potential of being employed in different fields of medicine.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    Peck MA, Langell MA. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater. 2012;24(23):4483.

    CAS  Google Scholar 

  2. [2]

    Farhadi S, Roostaei-Zaniyani Z. Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa(ammine)Ni(II) nitrate, [Ni(NH3)6](NO3)2, complex. Polyhedron. 2011;30(7):1244.

    CAS  Google Scholar 

  3. [3]

    Hosny NM. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron. 2011;30(3):470.

    CAS  Google Scholar 

  4. [4]

    Deraz N, Selim M, Ramadan M. Processing and properties of nanocrystalline Ni and NiO catalysts. Mater Chem Phys. 2009;113(1):269.

    CAS  Google Scholar 

  5. [5]

    Maia AOG, Meneses CT, Menezes AS, Flores WH, Melo DMA, Sasaki JM. Synthesis and X-ray structural characterization of NiO nanoparticles obtained through gelatin. J Non-Cryst Solids. 2006;352(32–35):3729.

    CAS  Google Scholar 

  6. [6]

    Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using the aqueous extract of Sargassum wightii. J Photochem Photobiol B. 2019;190:86.

    CAS  Google Scholar 

  7. [7]

    Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1(2):172.

    CAS  Google Scholar 

  8. [8]

    Yuko I, Naoto W, Junichiro Y, Saori Y, Yoshihide K, Eriko K, Hiroyuki T. Magnetic properties of NiO nanoparticles. Physica B. 2003;329:862.

    Google Scholar 

  9. [9]

    Pankhurst QA, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):R167.

    CAS  Google Scholar 

  10. [10]

    Amani-Beni Z, Nezamzadeh-Ejhieh A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal Chim Acta. 2018;1031:47.

    CAS  Google Scholar 

  11. [11]

    Hwang SC, Yoo SJ, Shin J, Cho YH, Jang JH, Cho E, Sung YE, Nam SW, Lim TH, Lee SC, Kim SK. Supported core@shell electrocatalysts for fuel cells: a close encounter with reality. Sci Rep. 2013;3:1309.

    Google Scholar 

  12. [12]

    Cheng J, Liping D, Zhang B, Ping S, Guangyao M. Properties and microstructure of NiO/SDC materials for SOFC anode applications. Rare Met. 2007;26(2):110.

    CAS  Google Scholar 

  13. [13]

    Adekunle AS, Oyekunle JAO, Oluwafemi OS, Joshua AO, Makinde WO, Ogunfowokan AO, Eleruja MA, Ebenso Eno E. Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2−) and nitric oxide (NO). Int J Electrochem Sci. 2014;9(6):3008.

    Google Scholar 

  14. [14]

    Darroudi M, Ahmad MB, Zak AK, Zamiri R, Hakimi M. Fabrication and characterization of gelatin stabilized silver nanoparticles under UV-light. Int J Mol Sci. 2011;12(9):6346.

    CAS  Google Scholar 

  15. [15]

    Amity Institute of Biotechnology AUUPLC, Gomti Nagar Extension, Lucknow UP, INDIA. A review on nanoparticles: their synthesis and types. Res J Recent Sci. 2015;4:9.

  16. [16]

    Xiang L, Deng XY, Jin Y. Experimental study on the synthesis of NiO nanoparticles. Scr Mater. 2002;47(4):219.

    CAS  Google Scholar 

  17. [17]

    Pradeep T. Noble metal nanoparticles for water purification: a critical review. Thin Solid Films. 2009;517(24):6441.

    CAS  Google Scholar 

  18. [18]

    Bahadur J, Sen D, Mazumder S, Ramanathan S. Effect of heat treatment on pore structure in nano-crystalline NiO: a small angle neutron scattering study. J Solid State Chem. 2008;181(5):1227.

    CAS  Google Scholar 

  19. [19]

    Li W, Haldar P. Highly active carbon supported core-shell PtNi@Pt nanoparticles for oxygen reduction reaction. Electrochem Solid State Lett. 2010;13(5):B47.

    CAS  Google Scholar 

  20. [20]

    Wu Y, He Y, Wu T, Weng W, Wan H. Effect of synthesis method on the physical and catalytic property of nanosized NiO. Mater Lett. 2007;61(13):2679.

    CAS  Google Scholar 

  21. [21]

    Bouremana A, Guittoum A, Hemmes M, Martínez-Blanco D, Gorria P, Blanco J, Benrekaa N. Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method. Mater Chem Phys. 2015;160:435.

    CAS  Google Scholar 

  22. [22]

    Wang SF, Shi LY, Feng X, Ma SR. Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation. Mater Lett. 2007;61(7):1549.

    CAS  Google Scholar 

  23. [23]

    Parsaee Z. Synthesis of novel amperometric urea-sensor using hybrid synthesized NiO-NPs/GO modified GCE in an aqueous solution of cetrimonium bromide. Ultrason Sonochem. 2018;44:120.

    CAS  Google Scholar 

  24. [24]

    Lai TL, Shu YY, Huang GL, Lee CC, Wang CB. Microwave-assisted and liquid oxidation combination techniques for the preparation of nickel oxide nanoparticles. J Alloys Compd. 2008;450(1–2):318.

    CAS  Google Scholar 

  25. [25]

    Qamara M, Gondal MA, Yamania ZH. Synthesis of nanostructured NiO and its application in laser-induced photocatalytic reduction of Cr(VI) from the water. J Mol Catal A Chem. 2011;341(1–2):83.

    Google Scholar 

  26. [26]

    Teoh LG, Li KD. Synthesis and characterization of NiO nanoparticles by sol–gel method. Mater Trans. 2012;53:2135.

    CAS  Google Scholar 

  27. [27]

    Zhang W, Liu HX, Hu C, Zhu XJ, Li YX. Preparation of layered oxide Li (Co1/3Ni1/3Mn1/3)O2 via the sol–gel process. Rare Met. 2008;27(2):158.

    Google Scholar 

  28. [28]

    Della Gaspera E, Bello V, Mattei G, Martucci A. SiO2 mesoporous thin films containing Ag and NiO nanoparticles synthesized combining sol–gel and impregnation techniques. Mater Chem Phys. 2011;131(1–2):313.

    CAS  Google Scholar 

  29. [29]

    Akbari A, Khammar M, Taherzadeh D, Rajabian A, Zak AK, Darroudi M. Zinc-doped cerium oxide nanoparticles: sol–gel synthesis, characterization, and investigation of their in vitro cytotoxicity effects. J Mol Struct. 2017;1149:771.

    CAS  Google Scholar 

  30. [30]

    Jeevanandam P, Pulimi VRR. Synthesis of nanocrystalline NiO by sol–gel and homogeneous precipitation methods. Indian J Chem. 2012;51A(04):586.

    CAS  Google Scholar 

  31. [31]

    Derikvandi H, Nezamzadeh-Ejhieh A. Increased photocatalytic activity of NiO and ZnO in the photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature. J Hazard Mater. 2017;321:629.

    CAS  Google Scholar 

  32. [32]

    Ameta P, Kumar A. A comparative study of photocatalytic activity of some coloured semiconducting oxides. Iran J Chem Chem Eng. 2010;29(2):43.

    CAS  Google Scholar 

  33. [33]

    Huang B, Li N, Lin W, Li H. A highly ordered honeycomb-like nickel(III/II) oxide-enhanced photocatalytic fuel cell for effective degradation of bisphenol A. J Hazard Mater. 2018;360:578.

    CAS  Google Scholar 

  34. [34]

    Fernandes DM, Hechenleitner AAW, Silva MF, Lima MK, Bittencourt PRS, Silva R, Melo MAC, Pineda EAG. Preparation and characterization of NiO, Fe2O3, Ni0.04Zn0.96O, and Fe0.03Zn0.97O nanoparticles. Mater Chem Phys. 2009;118(2–3):447.

    CAS  Google Scholar 

  35. [35]

    He H, Yang S, Yu K, Ju Y, Sun C, Wang L. Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. J Hazard Mater. 2010;173(1):393.

    CAS  Google Scholar 

  36. [36]

    Alnarabiji MS, Yahya N, Hamed Y, Ardakani SEM, Azizi K, Klemeš JJ, Abdullah B, Tasfy SFH, Abd Hamid ShB, Nashed O. Scalable bio-friendly method for production of homogeneous metal oxide nanoparticles using green bovine skin gelatin. J Clean Prod. 2017;162:186.

    CAS  Google Scholar 

  37. [37]

    Lai TL, Liu JY, Yong KF, Shu YY, Wang CB. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature. J Hazard Mater. 2008;157(2):496.

    CAS  Google Scholar 

  38. [38]

    Ejhieh AN, Khorsandi M. Photodecolorization of eriochrome black T using NiS–P zeolite as a heterogeneous catalyst. J Hazard Mater. 2010;176(1–3):629.

    CAS  Google Scholar 

  39. [39]

    Vasantharaj S, Sathiyavimal S, Saravanan M, Senthilkumar P, Gnanasekaran K, Shanmugavel M, Manikandan E, Pugazhendhi A. Synthesis of eco-friendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B. 2019;191:143.

    CAS  Google Scholar 

  40. [40]

    Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 2014;6(1):35.

    CAS  Google Scholar 

  41. [41]

    Wu Y, He Y, Wu T, Chen T, Weng W, Wan H. Influence of some parameters on the synthesis of nanosized NiO material by a modified sol–gel method. Mater Lett. 2007;61(14–15):3174.

    CAS  Google Scholar 

  42. [42]

    Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588.

    CAS  Google Scholar 

  43. [43]

    Jacob JM, Rajan R, Aji M, Kurup GG, Pugazhendhi A. Bio-inspired ZnS quantum dots as efficient photocatalysts for the degradation of methylene blue in the aqueous phase. Ceram Int. 2018;11:182.

    Google Scholar 

  44. [44]

    Hu H, Wang M, Deng C, Chen J, Wang A, Le H. Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater Lett. 2018;224:75.

    CAS  Google Scholar 

  45. [45]

    Ramesh M, Rao MPC, Anandan S, Nagaraja H. Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J Mater Res. 2018;33(5):601.

    CAS  Google Scholar 

  46. [46]

    Domen K, Kudo A, Onishi T. Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO SrTiO3. J Catal. 1986;102(1):92.

    CAS  Google Scholar 

  47. [47]

    Li Y, Niu J, Yin L, Wang W, Bao Y, Chen J, Duan Y. Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals. J Environ Sci. 2011;23(11):1911 (China).

    CAS  Google Scholar 

  48. [48]

    Dong C, Xiao X, Chen G, Guan H, Wang Y. Synthesis and photocatalytic degradation of methylene blue over PN junction Co3O4/ZnO core/shell nanorods. Mater Chem Phys. 2015;155:1.

    CAS  Google Scholar 

  49. [49]

    Abdul Rahman I, Ayob M, Radiman S. Enhanced photocatalytic performance of NiO-decorated ZnO nanowhiskers for methylene blue degradation. J Nanotechnol. 2014. https://doi.org/10.1155/2014/212694.

    Article  Google Scholar 

  50. [50]

    Fathima JB, Pugazhendhi A, Oves M, Venis R. Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J Mol Liq. 2018;260:1.

    CAS  Google Scholar 

  51. [51]

    Wang X, Mao H, Shan Y. Enhanced photocatalytic behavior and excellent electrochemical performance of hierarchically structured NiO microspheres. RSC Adv. 2014;4(67):35614.

    CAS  Google Scholar 

  52. [52]

    Carreon ML, Carreon HG, Espino-Valencia J, Carreon MA. Photocatalytic degradation of organic dyes by mesoporous nanocrystalline anatase. Mater Chem Phys. 2011;125(3):474.

    CAS  Google Scholar 

  53. [53]

    Saratale RG, Ghodake GS, Shinde SK, Cho SK, Saratale GD, Pugazhendhi A, Bharagava RN. Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of reactive green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer). J Environ Manage. 2018;223:1086.

    CAS  Google Scholar 

  54. [54]

    Nezamzadeh-Ejhieh A, Ghanbari-Mobarakeh Z. Heterogeneous photodegradation of 2, 4-dichlorophenol using FeO doped onto nano-particles of zeolite P. J Ind Eng Chem. 2015;21:668 (Washington, DC).

    CAS  Google Scholar 

  55. [55]

    Hassanpour M, Safardoust-Hojaghan H, Salavati-Niasari M. Rapid and eco-friendly synthesis of NiO/ZnO nanocomposite and its application in decolorization of dye. J Mater Sci Mater Electron. 2017;28(15):10830.

    CAS  Google Scholar 

  56. [56]

    Rakshit S, Ghosh S, Chall S, Mati SS, Moulik S, Bhattacharya SC. Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a cost-effective and eco-friendly approach. RSC Adv. 2013;3(42):19348.

    CAS  Google Scholar 

  57. [57]

    Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce an apoptotic response in human liver cells (HepG2). Chemosphere. 2013;93(10):2514.

    CAS  Google Scholar 

  58. [58]

    Karthik K, Dhanuskodi S, editors. Structural and optical properties of microwave assisted CdO-NiO nanocomposite. In: AIP Conference Proceedings 2016. 2016;1731(1):050021.

  59. [59]

    Wang X, Pu H, Hu D, Zang Y, Hu J, Yang Y. Chen ChPreparation of p-NiO/n-SiC heterojunction on the 4H-SiC substrate. Mater Lett. 2018;227:315.

    CAS  Google Scholar 

  60. [60]

    Shabani-Nooshabadi M, Tahernejad-Javazmi F. Rapid and fast strategy for the determination of glutathione in the presence of vitamin B 6 in biological and pharmaceutical samples using a nanostructure-based electrochemical sensor. RSC Adv. 2015;5(69):56255.

    CAS  Google Scholar 

  61. [61]

    Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog. 2017;111:375.

    CAS  Google Scholar 

  62. [62]

    Rahman MA, Radhakrishnan R, Gopalakrishnan R. Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J Alloys Compd. 2018. https://doi.org/10.1016/j.jallcom.2018.01.298.

    Article  Google Scholar 

  63. [63]

    Senobari S, Nezamzadeh-Ejhieh A. A pn junction NiO-CdS nanoparticles with enhanced photocatalytic activity: a response surface methodology study. J Mol Liq. 2018;257:173.

    CAS  Google Scholar 

  64. [64]

    Patel KN, Deshpande M, Chauhan K, Rajput P, Gujarati VP, Pandya S, Sathe V, Chaki SH. Effect of Mn doping concentration on structural, vibrational and magnetic properties of NiO nanoparticles. Adv Powder Technol. 2018;29(10):2394.

    CAS  Google Scholar 

  65. [65]

    Vishnukumar P, Saravanakumar B, Ravi G, Ganesh V, Guduru RK, Yuvakkumar R. Synthesis and characterization of NiO/Ni3V2O8 nanocomposite for supercapacitor applications. Mater Lett. 2018;219:114.

    CAS  Google Scholar 

  66. [66]

    Gondal M, Saleh TA, Drmosh Q. Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl Surf Sci. 2012;258(18):6982.

    CAS  Google Scholar 

  67. [67]

    Klochko N, Klepikova K, Zhadan D, Petrushenko S, Kopach V, Khrypunov G, Lyubov V, Dukarov S, Nikitin V, Maslak M, Zakovorotniy A, Khrypunova A. Structure, optical, electrical and thermoelectric properties of solution-processed Li-doped NiO films grown by SILAR. Mater Sci Semicond Process. 2018;83:42.

    CAS  Google Scholar 

  68. [68]

    Jahromi SP, Huang N, Muhamad M, Lim H. Green gelatine-assisted sol–gel synthesis of ultrasmall nickel oxide nanoparticles. Ceram Int. 2013;39(4):3909.

    Google Scholar 

  69. [69]

    Roy HS. Polymer composites based on functionalized metal analogs incorporated with ionic liquids for electrochemical applications. Dhaka: University of Dhaka; 2018.

    Google Scholar 

  70. [70]

    Oves M, Aslam M, Rauf MA, Qayyum S, Qari HA, Khan MS, Alam MZ, Tabrez S, Pugazhendhi A, Ismail IMI. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C. 2018;89:429.

    CAS  Google Scholar 

  71. [71]

    Sadeghi M, Ghaedi H, Yekta S, Babanezhad E. Decontamination of toxic chemical warfare sulfur mustard and nerve agent simulants by NiO NPs/Ag-clinoptilolite zeolite composite adsorbent. J Environ Chem Eng. 2016;4(3):2990.

    CAS  Google Scholar 

  72. [72]

    Barakat NA, Abdelkareem MA, El-Newehy M, Kim HY. Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale Res Lett. 2013;8(1):402.

    Google Scholar 

  73. [73]

    Das RK, Golder AK. Use of plant-based analytes for the synthesis of NiO nanoparticles in catalyzing electrochemical H2O2 production. J Electron Chem. 2018;823:9.

    CAS  Google Scholar 

  74. [74]

    Soleimani E, Mohammadi M. Synthesis, characterization and properties of polystyrene/NiO nanocomposites. J Mater Sci Mater Electron. 2018;29(11):9494.

    CAS  Google Scholar 

  75. [75]

    Seto T, Akinaga H, Takano F, Koga K, Orii T, Hirasawa M. Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles. J Phys Chem B. 2005;109(28):13403.

    CAS  Google Scholar 

  76. [76]

    Ibrahim E, Abdel-Rahman LH, Abu-Dief AM, Elshafaie A, Hamdan SK, Ahmed A. The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic properties. Mater Res Bull. 2018;107:492.

    CAS  Google Scholar 

  77. [77]

    Siddiqui MA, Ahamed M, Ahmad J, Khan MM, Musarrat J, Al-Khedhairy AA, Alrokayan SA. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress, and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol. 2012;50(3–4):641.

    CAS  Google Scholar 

  78. [78]

    Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S. Nanostructured CdO–NiO composite for multifunctional applications. Food Chem Toxicol. 2018;112:106.

    CAS  Google Scholar 

  79. [79]

    Mariam AA, Kashif M, Arokiyaraj S, Bououdina M, Sankaracharyulu M, Jayachandran-M M, Hashim U. Bio-synthesis of NiO and Ni nanoparticles and their characterization. J Nanomater Biostruct. 2014;9(3):1007.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Elite Researcher Grant Committee (No. 971375) from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Majid Darroudi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabouri, Z., Fereydouni, N., Akbari, A. et al. Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. 39, 1134–1144 (2020). https://doi.org/10.1007/s12598-019-01333-z

Download citation

Keywords

  • Nickel oxide nanoparticles
  • Sol–gel
  • Photocatalytic degradation
  • Salvia macrosiphon Boiss plant extract
  • Cytotoxicity