Skip to main content
Log in

Computational fluid dynamics simulation and experimental analysis of ultrafine powder suspension

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The suspension characteristics of ultrafine powder slurry in the stirred vessel were simulated by using computational fluid dynamics. The results show that the Rushton disk turbine impeller is more conducive to maintaining suspended homogeneity and circulation of slurry compared with the pitch blade turbine pumping up impeller and the pitch blade turbine pumping down impeller. And the increase in stirring speed enhances turbulent fluctuation and anisotropic velocity of the fluid at the cost of more power consumption, which improves dispersibility and suspensibility of the particles. Meanwhile, the change of impeller clearance has a weak influence on the flow pattern, and the impeller clearance of 0.32T (T is the diameter of the bottom of the reactor) can achieve better dispersivity and suspensibility of the particles with lower power consumption and larger axial velocity. The experiments of surface coating modification of ultrafine titanium dioxide (TiO2) were carried out under the same conditions for those of the simulation system. The surface film morphology and photocatalytic properties of the modified TiO2 were analyzed, and the obtained data are well consistent with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gu DY, Liu ZH, Xie ZM, Li J, Tao CY, Wang YD. Numerical simulation of solid–liquid suspension in a stirred tank with a dual punched rigid-flexible impeller. Adv Powder Technol. 2017;28(10):2723.

    Article  Google Scholar 

  2. Divyamaan W, Moses OT, Vishnu KP, Ranjeet PU. CFD simulation of solid–liquid stirred tanks for low to dense solid loading systems. Particuology. 2016;29:16.

    Article  Google Scholar 

  3. Liu HZ, Zhang B, Jing XJ, Wang W, Wang LJ. Adsorption and desorption properties for rhenium using a kind of weak-base anion resin. Rare Met. 2018;37(8):707.

    Article  Google Scholar 

  4. Mishra P, Ein-Mozaffari F. Using computational fluid dynamics to analyze the performance of the Maxblend impeller in solid-liquid mixing operations. Int J Multiph Flow. 2017;91:194.

    Article  CAS  Google Scholar 

  5. Hsu RC, Chiu CK, Lin SC. A CFD study of the drawdown speed of floating solids in a stirred vessel. J Taiwan Inst Chem Eng. 2018;90:1.

    Article  Google Scholar 

  6. Tamburini A, Cipollina A, Micale G, Brucato A, Ciofalo M. CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: prediction of the minimum impeller speed for complete suspension. Chem Eng J. 2012;193:234.

    Article  Google Scholar 

  7. Huang X, Zhang XY, Huang D, Gao HX, Gong XP. Performances of micro-arc oxidation coating formed on aluminum alloy with nano-TiO2 and La(NO3)3 compound additive. Chin J Rare Met. 2017;41(1):25.

    Google Scholar 

  8. Divyamaan W, Utikar RP, Moses OT, Vishnu KP. CFD simulation of solid–liquid stirred tank. Adv Powder Technol. 2012;23(4):445.

    Article  Google Scholar 

  9. Dohi N, Takahashi T, Minekawa K, Kawase Y. Power consumption and solid suspension performance of large-scale impellers in gas–liquid–solid three phase stirred tank reactors. Chem Eng J. 2017;97(2–3):103.

    Google Scholar 

  10. Cortada-Garcia M, Doreb V, Mazzei L, Angelia P. Experimental and CFD studies of power consumption in the agitation of highly viscous shear thinning fluids. Chem Eng Res Des. 2017;119:171.

    Article  CAS  Google Scholar 

  11. Gu DY, Liu ZH, Qiu FC, Li J. Design of impeller blades for efficient homogeneity of solid–liquid suspension in a stirred tank reactor. Adv Powder Technol. 2017;28(10):2723.

    Article  Google Scholar 

  12. Li LC, Xu B. CFD simulation of floating particles suspension in a stirred tank. Chem Pap. 2017;71(8):1377.

    Article  CAS  Google Scholar 

  13. Xie L, Luo ZH. Modeling and simulation of the influences of particle–particle interactions on dense solid–liquid suspensions in stirred vessels. Chem Eng Sci. 2018;176:439.

    Article  CAS  Google Scholar 

  14. Qiao SC, Wang RJ, Yan YF, Yang XX. Computational fluid dynamics analysis to effects of geometrical design and physical property on complete suspension of floating solids in stirred tanks. Asia-Pac J Chem Eng. 2014;9:866.

    Article  CAS  Google Scholar 

  15. Ma Hiroaki, Kō H, Hideto Y. Powder Technology Handbook. Boca Raton: Taylor and Francis Group Press; 2006. 3.

    Google Scholar 

  16. Song R, Yang D, He L. Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly (vinylidene fluoride). J Mater Sci. 2007;42(20):8408.

    Article  CAS  Google Scholar 

  17. Yang H, Mao J. Properties of AlPO4/CePO4 hybrid coating on rutile TiO2. Surf Eng. 2017;33:226.

    Article  CAS  Google Scholar 

  18. Gao H, Qiao B, Wang TJ, Wang DZ, Jin Y. Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity. Ind Eng Chem Res. 2014;53:189.

    Article  CAS  Google Scholar 

  19. Andrew Hanson. European GCC a fine filler. Ind Minerals. 1996;6:50.

    Google Scholar 

  20. Heike PK, Muller F, Reinhard P. Scale-up for grinding in stirred ball mills. Aufbereit Tech Mineral Process. 1996;37(10):469.

    Google Scholar 

  21. Yekeler M, Ozkan A, Austin LG. Kinetics of fine wet grinding in a laboratory ball mill. Powder Technol. 2001;114(1/2/3):224.

    Article  CAS  Google Scholar 

  22. Bernhardt C, Reinsch E, Husemann K. Fine grinding in mineral processing using stirred ball mills. Powder Technol. 1999;105:357.

    Article  CAS  Google Scholar 

  23. Xu Q, Zhao J, Xu H, Zhou H. Dispersion of TiO2 particles and preparation of SiO2 coating layers on the surfaces of TiO2. Mater Res Innov. 2015;19:142.

    Article  Google Scholar 

  24. Dong XB, Sun ZM, Jiang L, Li CQ. Investigation on the film-coating mechanism of alumina-coated rutile TiO2 and its dispersion stability. Adv Powder Technol. 2017;28(8):1982.

    Article  CAS  Google Scholar 

  25. Zhang YS, Yin HB, Wang AL, Liu C, Yu LB, Jiang TS, Hang Y. Evolution of zirconia coating layer on rutile TiO2 surface and the pigmentary property. J Phys Chem Solids. 2010;71:1458.

    Article  CAS  Google Scholar 

  26. Wu HX, Wang TJ, Jin Y. Film-coating process of hydrated alumina on TiO2 particles. Ind Eng Chem Res. 2006;45:1337.

    Article  CAS  Google Scholar 

  27. Liang Y, Qiao B, Wang TJ, Gao H, Yu KY. Effects of porous films on the light reflectivity of pigmentary titanium dioxide particles. Appl Surf Sci. 2016;387:581.

    Article  CAS  Google Scholar 

  28. Wei BX, Zhao L, Wang TJ, Gao H, Wu HX, Jin Y. Photo-stability of TiO2 particles coated with several transition metal oxides and its measurement by rhodamine-B degradation. Adv Powder Technol. 2013;24:708.

    Article  CAS  Google Scholar 

  29. Wu WC, Cui J, Jiang H, Jiang HB, Li CZ. Preparation of monodispersed titanium dioxide by wet grinding and its influencing factors. China Powder Sci Technol. 2018;24(2):60.

    Google Scholar 

  30. Zhang HW. CFD Simulation and Experimental Verification of Single-Phase Flow Field in Impeller Stirred Media Mill. Guangzhou: South China University of Technology; 2013. 18.

    Google Scholar 

  31. Tamburini A, Cipollina A, Micale G, Brucato A. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of solid particle distribution. Chem Eng J. 2013;223:875.

    Article  CAS  Google Scholar 

  32. Ding Y. Numerical Simulation of Solid–Liquid Two Phase Flow in Dual-Impeller System. Shanghai: East China University of Science & Technology; 2015. 21.

    Google Scholar 

  33. Wang SY, Jiang XX, Wang RC, Wang X, Yang SW, Zhao J, Liu Y. Numerical simulation of flow behavior of particles in a liquid–solid stirred vessel with baffles. Adv Powder Technol. 2017;28(6):1611.

    Article  Google Scholar 

  34. Sahu AK, Kumar P, Patwardhan AW, Joshi JB. CFD modelling and mixing in stirred tanks. Chem Eng Sci. 1999;54(13–14):2285.

    Article  CAS  Google Scholar 

  35. Montante G, Lee KC, Brucato A, Yianneskis M. Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels. Chem Eng Sci. 2001;56(12):3751.

    Article  CAS  Google Scholar 

  36. Javed KH, Mahmud T, Zhu JM. Numerical simulation of turbulent batch mixing in a vessel agitated by a Rushton turbine. Chem Eng Sci. 2006;45(2):99.

    CAS  Google Scholar 

  37. Soos M, Moussa AS, Ehrl L, Sefcik J, Wu H, Morbidelli M. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J Colloid Interface Sci. 2008;319(2):577.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21838003, 91834301 and 21878092), the Shanghai Scientific and Technological Innovation Project (No. 18JC1410600), the Social Development Program of Shanghai (Nos. 17DZ1200900 and 18DZ2252400), the Innovation Program of Shanghai Municipal Education Commission and the Fundamental Research Funds for the Central Universities (No. 222201718002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Bo Jiang or Chun-Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WC., Cui, J., Jiang, H. et al. Computational fluid dynamics simulation and experimental analysis of ultrafine powder suspension. Rare Met. 39, 850–860 (2020). https://doi.org/10.1007/s12598-019-01323-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01323-1

Keywords

Navigation