Skip to main content
Log in

Inorganic shell nanostructures to enhance performance and stability of metal nanoparticles in catalytic applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this article, we review the recent progress and our research activity on the synthesis of inorganic shell nanostructures to enhance the catalytic performance and stability of metal nanoparticles in catalytic applications. First, we introduce general synthetic strategies for the fabrication of inorganic nanoscale shell layers, including template-assisted sol-gel coating, hydrothermal (or solvothermal) synthesis and the self-templating process. We also discuss recent examples of metal nanoparticles (NPs) with nanoscale shell layers, namely core–shell, yolk–shell and multiple NPs-embedded nanoscale shell. We then discuss the performance and stability of metal particles in practical catalytic applications. Finally, we conclude with a summary and perspective on the further progress of inorganic nanostructure with nanoscale shell layers for catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P. Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed. 2006;45(46):7824.

    CAS  Google Scholar 

  2. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007;7(10):3097.

    CAS  Google Scholar 

  3. Lee I, Delbecq F, Morales R, Albiter MA, Zaera F. Tuning selectivity in catalysis by controlling particle shape. Nat Mater. 2009;8:132.

    CAS  Google Scholar 

  4. Lee I, Zaera F. Catalytic conversion of olefins on supported cubic platinum nanoparticles: selectivity of (100) versus (111) surfaces. J Catal. 2010;269(2):359.

    CAS  Google Scholar 

  5. Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J. Preparation of mesoporous Ni–alumina catalyst by one-step sol–gel method: control of textural properties and catalytic application to the hydrodechlorination of o-dichlorobenzene. Catal Lett. 2005;104(3):181.

    CAS  Google Scholar 

  6. Kim P, Kim H, Joo JB, Kim W, Song IK, Yi J. Effect of nickel precursor on the catalytic performance of Ni/Al2O3 catalysts in the hydrodechlorination of 1,1,2-trichloroethane. J Mol Catal A Chem. 2006;256(1–2):178.

    CAS  Google Scholar 

  7. Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J. Preparation of highly dispersed Pt catalyst using sodium alkoxide as a reducing agent and its application to the methanol electro-oxidation. J Mol Catal A Chem. 2007;263(1–2):15.

    CAS  Google Scholar 

  8. Joo JB, Kim P, Kim W, Yi J. Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation. Catal Today. 2008;131(1–4):219.

    CAS  Google Scholar 

  9. Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J. NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J Power Sources. 2006;160(2):987.

    CAS  Google Scholar 

  10. Kim C, Lee H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catal Commun. 2009;11(1):7.

    CAS  Google Scholar 

  11. Jia CJ, Schüth F. Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys. 2011;13:2457.

    CAS  Google Scholar 

  12. Mahmoud MA, Tabor CE, El-Sayed MA, Ding Y, Wang ZL. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. J Am Chem Soc. 2008;130(14):4590.

    CAS  Google Scholar 

  13. Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Micropor Mesopor Mat. 2005;77(1):1.

    CAS  Google Scholar 

  14. Li W, Wu Z, Wang J, Elzatahry AA, Zhao D. A perspective on mesoporous TiO2 materials. Chem Mater. 2014;26(1):287.

    CAS  Google Scholar 

  15. Davidson M, Ji Y, Leong GJ, Kovach NC, Trewyn BG, Richards RM. Hybrid mesoporous silica/noble-metal nanoparticle materials—synthesis and catalytic applications. ACS Appl Nano Mater. 2018;1(9):4386.

    CAS  Google Scholar 

  16. Zhang Q, Joo JB, Lu Z, Dahl M, Oliveira D, Ye M, Yin Y. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011;4(1):103.

    CAS  Google Scholar 

  17. Park J, Song H. Metal@Silica yolk–shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011;4(1):33.

    CAS  Google Scholar 

  18. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y. Core–shell nanostructured catalysts. Acc Chem Res. 2012;46(8):1816.

    Google Scholar 

  19. Chen D, Cao L, Huang F, Imperia P, Cheng YB, Caruso RA. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J Am Chem Soc. 2010;132(12):4438.

    CAS  Google Scholar 

  20. Zhang Q, Ge J, Goebl J, Hu Y, Lu Z, Yin Y. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009;2(7):583.

    CAS  Google Scholar 

  21. Yun HJ, Lee H, Joo JB, Kim W, Yi J. Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J Phys Chem C. 2009;113(8):3050.

    CAS  Google Scholar 

  22. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science. 2004;304(5671):711.

    CAS  Google Scholar 

  23. Yang Z, Niu Z, Lu Y, Hu Z, Han CC. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core–shell gel particles. Angew Chem Int Ed. 2003;42(17):1943.

    CAS  Google Scholar 

  24. Joo JB, Dahl M, Li N, Zaera F, Yin Y. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energ Environ Sci. 2013;6:2082.

    CAS  Google Scholar 

  25. Joo JB, Liu H, Lee YJ, Dahl M, Yu H, Zaera F, Yin Y. Tailored synthesis of C@TiO2 yolk–shell nanostructures for highly efficient photocatalysis. Catal Today. 2016;264(15):261.

    CAS  Google Scholar 

  26. Moon GD, Joo JB, Dahl M, Jung H, Yin Y. Nitridation and layered assembly of hollow TiO2 shells for electrochemical energy storage. Adv Funct Mater. 2014;24(6):848.

    CAS  Google Scholar 

  27. Liang X, Li J, Joo JB, Gutiérrez A, Tillekaratne A, Lee I, Yin Y, Zaera F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew Chem Int Ed. 2012;51(32):8034.

    CAS  Google Scholar 

  28. Li J, Liang X, Joo JB, Lee I, Yin Y, Zaera F. Mass transport across the porous oxide shells of core–shell and yolk–shell nanostructures in liquid phase. J Phys Chem C. 2013;117(39):20043.

    CAS  Google Scholar 

  29. Zhang Q, Zhang T, Ge J, Yin Y. Permeable silica shell through surface-protected etching. Nano Lett. 2008;8(9):2867.

    CAS  Google Scholar 

  30. Lee I, Joo JB, Yin Y, Zaera F. A Yolk@Shell nanoarchitecture for Au/TiO2 catalysts. Angew Chem Int Ed. 2011;50(43):10208.

    CAS  Google Scholar 

  31. Joo JB, Zhang Q, Dahl M, Zaera F, Yin Y. Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. J Mater Res. 2013;28(3):362.

    CAS  Google Scholar 

  32. Lee H, Jeong U, Kim Y, Joo JB. Magnetically-separable and thermally-stable Au nanoparticles encapsulated in mesoporous silica for catalytic applications. Top Catal. 2017;60(9–11):763.

    CAS  Google Scholar 

  33. Jeong U, Joo JB, Kim Y. Au nanoparticle-embedded SiO2–Au@SiO2 catalysts with improved catalytic activity, enhanced stability to metal sintering and excellent recyclability. RSC Adv. 2015;5:55608.

    CAS  Google Scholar 

  34. Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y. Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater. 2013;23(34):4246.

    CAS  Google Scholar 

  35. Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energ Environ Sci. 2012;5:6321.

    CAS  Google Scholar 

  36. Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv Funct Mater. 2012;22(1):166.

    CAS  Google Scholar 

  37. Joo JB, Vu A, Zhang Q, Dahl M, Gu M, Zaera F, Yin Y. A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural. ChemSusChem. 2013;6(10):2001.

    CAS  Google Scholar 

  38. Lou XW, Yuan C, Zhang Q, Archer LA. Platinum-functionalized octahedral silica nanocages: synthesis and characterization. Angew Chem Int Ed. 2006;45(23):3825.

    CAS  Google Scholar 

  39. Teo JJ, Chang Y, Zeng HC. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir. 2006;22(17):7369.

    CAS  Google Scholar 

  40. Cao SW, Zhu YJ, Cheng GF, Huang YH. Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures. J Phys Chem Solids. 2010;71(12):1680.

    CAS  Google Scholar 

  41. Li N, Zhang Q, Liu J, Joo JB, Lee A, Gan Y, Yin Y. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun. 2013;49:5135.

    CAS  Google Scholar 

  42. Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed. 2011;50(30):6799.

    CAS  Google Scholar 

  43. Lee I, Joo JB, Yin Y, Zaera F. Au@Void@TiO2 yolk–shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surf Sci. 2016;648:150.

    CAS  Google Scholar 

  44. Pastoriza-Santos I, Koktysh DS, Mamedov AA, Giersig M, Kotov NA, Liz-Marzán LM. One-pot synthesis of Ag@TiO2 core–shell nanoparticles and their layer-by-layer assembly. Langmuir. 2000;16(6):2731.

    CAS  Google Scholar 

  45. Mayya KS, Gittins DI, Dibaj AM, Caruso F. Nanotubes prepared by templating sacrificial nickel nanorods. Nano Lett. 2001;1(12):727.

    CAS  Google Scholar 

  46. Zhong Z, Yin Y, Gates B, Xia Y. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv Mater. 2000;12(3):206.

    CAS  Google Scholar 

  47. Yoon SB, Kim JY, Kim JH, Park YJ, Yoon KR, Park SK, Yu JS. Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. J Mater Chem. 2007;17:1758.

    CAS  Google Scholar 

  48. Lou XW, Yuan C, Archer LA. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. Small. 2007;3(2):261.

    CAS  Google Scholar 

  49. Chen JS, Archer LA, Lou XW. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem. 2011;21:9912.

    CAS  Google Scholar 

  50. Lou XW, Yuan C, Archer LA. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater. 2007;19(20):3328.

    CAS  Google Scholar 

  51. Nguyen CC, Vu NN, Do TO. Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness. J Mater Chem A. 2016;4:4413.

    CAS  Google Scholar 

  52. Joo JB, Kim P, Kim W, Kim J, Kim ND, Yi J. Simple preparation of hollow carbon sphere via templating method. Curr Appl Phys. 2008;8(6):814.

    Google Scholar 

  53. Hu Y, Ge J, Sun Y, Zhang T, Yin Y. A self-templated approach to TiO2 microcapsules. Nano Lett. 2007;7(6):1832.

    CAS  Google Scholar 

  54. Zhang Q, Lee I, Ge J, Zaera F, Yin Y. Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv Funct Mater. 2010;20(14):2201.

    CAS  Google Scholar 

  55. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA. Hybrid carbon silica nanofibers through sol–gel electrospinning. Langmuir. 2014;30(51):15504.

    CAS  Google Scholar 

  56. Zhang T, Ge J, Hu Y, Zhang Q, Aloni S, Yin Y. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew Chem Int Ed. 2008;47(31):5806.

    CAS  Google Scholar 

  57. Fang X, Chen C, Liu Z, Liu P, Zheng N. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale. 2011;3:1632.

    CAS  Google Scholar 

  58. Yang HG, Zeng HC. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening. J Phys Chem B. 2004;108(11):3492.

    CAS  Google Scholar 

  59. Li J, Zeng HC. Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. J Am Chem Soc. 2007;129(51):15839.

    CAS  Google Scholar 

  60. Lou XW, Wang Y, Yuan C, Lee JY, Archer LA. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater. 2006;18(17):2325.

    CAS  Google Scholar 

  61. Xu Y, Zhang Y, Zhou Y, Xiang S, Wang Q, Zhang C, Sheng X. CeO2 hollow nanospheres synthesized by a one pot template-free hydrothermal method and their application as catalyst support. RSC Adv. 2015;5:58237.

    CAS  Google Scholar 

  62. Cao CY, Cui ZM, Chen CQ, Song WG, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C. 2010;114(21):9865.

    CAS  Google Scholar 

  63. Chang Y, Teo JJ, Zeng HC. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir. 2004;21(3):1074.

    Google Scholar 

  64. Liu B, Zeng HC. Symmetric and asymmetric ostwald ripening in the fabrication of homogeneous core–shell semiconductors. Small. 2005;1(5):566.

    CAS  Google Scholar 

  65. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed. 2011;50(26):5947.

    CAS  Google Scholar 

  66. Lee YJ, Joo JB, Yin Y, Zaera F. Evaluation of the effective photoexcitation distances in the photocatalytic production of H2 from water using Au@Void@TiO2 yolk–shell nanostructures. ACS Energy Lett. 2016;1(1):52.

    CAS  Google Scholar 

  67. Ge J, Zhang Q, Zhang T, Yin Y. Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew Chem Int Ed. 2008;47(46):8924.

    CAS  Google Scholar 

  68. Dillon RJ, Joo JB, Zaera F, Yin Y, Bardeen CJ. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core–shell nanostructures. Phys Chem Chem Phys. 2013;15:1488.

    CAS  Google Scholar 

  69. Zhang Q, Shu XZ, Lucas JM, Toste FD, Somorjai GA, Alivisatos AP. Inorganic micelles as efficient and recyclable micellar catalysts. Nano Lett. 2014;14(1):379.

    CAS  Google Scholar 

  70. Kim M, Park JC, Kim A, Park KH, Song H. Porosity control of Pd@SiO2 yolk–shell nanocatalysts by the formation of nickel phyllosilicate and its influence on Suzuki coupling reactions. Langmuir. 2012;28(15):6441.

    CAS  Google Scholar 

  71. Nabid MR, Bide Y, Abuali M. Copper core silver shell nanoparticle–yolk/shell Fe3O4@chitosan-derived carbon nanoparticle composite as an efficient catalyst for catalytic epoxidation in water. RSC Adv. 2014;4:35844.

    CAS  Google Scholar 

  72. Li X, Zhang W, Zhang L, Yang H. Pd nanoparticles confined in fluoro-functionalized yolk–shell-structured silica for olefin hydrogenation in water. Chin J Catal. 2013;34(6):1192.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE, No. 20174010201490). This work is also financially supported by the Korea Environment Industry & Technology Institute (KEITI) through “The Chemical Accident Prevention Technology Development Project” granted by the Korea Ministry of Environment (MOE, No. 2017001960004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Bong Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, I., Lee, H.K., Lee, G.W. et al. Inorganic shell nanostructures to enhance performance and stability of metal nanoparticles in catalytic applications. Rare Met. 39, 767–783 (2020). https://doi.org/10.1007/s12598-019-01203-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01203-8

Keywords

Navigation