Advertisement

Rare Metals

, Volume 37, Issue 6, pp 527–535 | Cite as

Enhanced performance of solid-state Li–O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode

  • Liang Xiao
  • Er-Wei Li
  • Jing-Yu Yi
  • Wen Meng
  • Bo-Hua Deng
  • Jin-Ping Liu
Article
  • 222 Downloads

Abstract

The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)–nanoarray cathode for lithium–O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self-standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE–Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE–Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.

Keywords

Solid-state Li–O2 battery Gel polymer electrolyte Co3O4 nanosheet Nanoarray electrode Electrolyte–cathode interface 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21673169 and 51672205), the National Key Research and Development Program of China (No. 2016YFA0202602), the Research Start-Up Fund from Wuhan University of Technology and the Fundamental Research Funds for the Central Universities (Nos. 2016IVA083 and 2017IB005).

References

  1. [1]
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2011;11(1):19.CrossRefGoogle Scholar
  2. [2]
    Luntz AC, McCloskey BD. Nonaqueous Li–air batteries: a status report. Chem Rev. 2014;114(23):11721.CrossRefGoogle Scholar
  3. [3]
    Tan P, Jiang HR, Zhu XB, An L, Jung CY, Wu MC, Shi L, Shyy W, Zhao TS. Advances and challenges in lithium–air batteries. Appl Energy. 2017;204:780.CrossRefGoogle Scholar
  4. [4]
    Grande L, Paillard E, Hassoun J, Park JB, Lee YJ, Sun YK, Passerini S, Scrosati B. The lithium/air battery: still an emerging system or a practical reality? Adv Mater. 2015;27(5):784.CrossRefGoogle Scholar
  5. [5]
    Sharon D, Hirshberg D, Afri M, Frimer AA, Noked M, Aurbach D. Aprotic metal–oxygen batteries: recent findings and insights. J Solid State Electrochem. 2017;21(7):1861.CrossRefGoogle Scholar
  6. [6]
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W. Lithium–air battery: promise and challenges. J Phys Chem Lett. 2010;1(14):2193.CrossRefGoogle Scholar
  7. [7]
    Geng D, Ding N, Hor TSA, Chien SW, Liu Z, Wuu D, Sun XL, Zong Y. From lithium–oxygen to lithium–air batteries: challenges and opportunities. Adv Energy Mater. 2016;6(9):1502164.CrossRefGoogle Scholar
  8. [8]
    Chang Z, Xu J, Zhang X. Recent progress in electrocatalyst for Li–O2 batteries. Adv Energy Mater. 2017;7(23):1700875.CrossRefGoogle Scholar
  9. [9]
    Shao ZP, Liu ML, Tan P. Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ Sci. 2017;10(10):2056.CrossRefGoogle Scholar
  10. [10]
    Lu J, Li L, Park JB, Sun YK, Wu F, Amine K. Aprotic and aqueous Li–O2 batteries. Chem Rev. 2014;114(11):5611.CrossRefGoogle Scholar
  11. [11]
    Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J Phys Chem C. 2010;114(19):9178.CrossRefGoogle Scholar
  12. [12]
    Kwon HM, Thomas ML, Tatara R, Oda Y, Kobayashi Y, Nakanishi A, Ueno K, Dokko K, Watanabee M. Stability of glyme solvate ionic liquid as an electrolyte for rechargeable Li–O2 batteries. ACS Appl Mater Interfaces. 2017;9(7):6014.CrossRefGoogle Scholar
  13. [13]
    Lim HK, Lim HD, Park KY, Seo DH, Gwon H, Hong J, Goddard WA, Kim H, Kang K. Toward a lithium–”air” battery: the effect of CO2 on the chemistry of a lithium–oxygen cell. J Am Chem Soc. 2013;135(26):9733–42.CrossRefGoogle Scholar
  14. [14]
    Guo Z, Dong X, Yuan S, Wang Y, Xia Y. Humidity effect on electrochemical performance of Li–O2 batteries. J Power Sources. 2014;264:1.CrossRefGoogle Scholar
  15. [15]
    Zhang T, Zhou H. A reversible long-life lithium–air battery in ambient air. Nat Commum. 2013;4:1817.CrossRefGoogle Scholar
  16. [16]
    Peng Z, Freunberger SA, Chen Y, Bruce PG. A reversible and higher-rate Li–O2 battery. Science. 2012;337(6094):563.CrossRefGoogle Scholar
  17. [17]
    Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG. High rate and stable cycling of lithium metal anode. Nat Commun. 2015;6:6362.CrossRefGoogle Scholar
  18. [18]
    Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater. 2016;28(15):2888.CrossRefGoogle Scholar
  19. [19]
    Zhang R, Cheng XB, Zhao CZ, Peng HJ, Shi JL, Huang JQ, Wang JF, Wei F, Zhang Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016;28(11):2155.CrossRefGoogle Scholar
  20. [20]
    Wu S, Yi J, Zhu K, Bai S, Liu Y, Qiao Y, Ishida M, Zhou HS. A super-hydrophobic quasi-solid electrolyte for Li–O2 battery with improved safety and cycle life in humid atmosphere. Adv Energy Mater. 2017;7(4):1601759.CrossRefGoogle Scholar
  21. [21]
    Liang Z, Zheng G, Liu C, Liu N, Li W, Yan K, Yao HB, Hsu PC, Chu S, Cui Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015;15(5):2910–6.CrossRefGoogle Scholar
  22. [22]
    Khurana R, Schaefer JL, Archer LA, Coates GW. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc. 2014;136(20):7395.CrossRefGoogle Scholar
  23. [23]
    Liu QC, Liu T, Liu DP, Li ZJ, Zhang XB, Zhang Y. A flexible and wearable lithium–oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips. Adv Mater. 2016;28(38):8413.CrossRefGoogle Scholar
  24. [24]
    Wang L, Zhang Y, Pan J, Peng H. Stretchable lithium–air batteries for wearable electronics. J Mater Chem A. 2016;4(35):13419.CrossRefGoogle Scholar
  25. [25]
    Zhu XB, Zhao TS, Wei ZH, Tan P, Zhao G. A novel solid-state Li–O2 battery with an integrated electrolyte and cathode structure. Energy Environ Sci. 2015;8(9):2782.CrossRefGoogle Scholar
  26. [26]
    Bonnet-Mercier N, Wong RA, Thomas ML, Dutta A, Yamanaka K, Yogi C, Ohta T, Byon HR. A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li–O2 batteries. Sci Rep. 2014;4:7127.CrossRefGoogle Scholar
  27. [27]
    Li F, Zhang T, Zhou H. Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy Environ Sci. 2013;6(4):1125.CrossRefGoogle Scholar
  28. [28]
    Matsuda S, Kubo Y, Uosaki K, Nakanishi S. Potassium ions promote solution-route Li2O2 formation in the positive electrode reaction of Li–O2 batteries. J Phys Chem Lett. 2017;8(6):1142.CrossRefGoogle Scholar
  29. [29]
    Viswanathan V, Thygesen KS, Hummelshoj JS, Norskov JK, Girishkumar G, McCloskey BD, Luntz AC. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J Chem Res. 2011;135(21):214704.Google Scholar
  30. [30]
    Shen C, Wen Z, Wang F, Huang X, Rui K, Wu X. Reduced free-standing Co3O4@Ni cathode for lithium–oxygen batteries with enhanced electrochemical performance. RSC Adv. 2016;6(20):16263.CrossRefGoogle Scholar
  31. [31]
    Liu T, Liu QC, Xu JJ, Zhang XB. Cable-type water-survivable flexible Li–O2 battery. Small. 2016;12(23):3101.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations