Skip to main content
Log in

High-temperature formation phases and crystal structure of hot-pressed thermoelectric compounds with chalcopyrite-type structure

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, we introduced the temperature-dependent formation phases and crystallographic parameters of hot-pressed silver gallium telluride AgGaTe2 and copper gallium telluride CuGaTe2 with chalcopyrite structure from 300 to 800 K. These two compounds are potential thermoelectric materials in the intermediate temperature range; however, the temperature-dependent formation phases and crystallographic parameters of hot-pressed samples have not yet been analyzed in detail. The crystal structure analysis based on synchrotron X-ray diffraction (SXRD) measurements clarifies that impurity phases such as Te and Ag2Te in the AgGaTe2 matrix and Te and CuTe in the CuGaTe2 matrix appear at some temperature regions above 300 K. The existence of such impurity phases could be correlated with the increases of the electrical resistivity and Seebeck coefficient of the samples after multiple measurement cycles of the temperature-dependent transport properties from 300 to 800 K. The tetragonal lattice parameters a and c, tetragonal lattice volume, thermal expansion coefficients, tetragonal distortion, anion displacement parameter, and isotropic displacement parameter of the hot-pressed AgGaTe2 and CuGaTe2 were also analyzed. These crystallographic parameters are expected to substantially affect the thermoelectric properties of AgGaTe2 and CuGaTe2. Our results provide prospect of the long-term high-temperature stability and clues of the detailed analysis on the transport properties of hot-pressed AgGaTe2 and CuGaTe2, which should aid their development for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shay JL, Wernick JH. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications: International Series of Monographs in the Science of the Solid State. Newyork: Pergamon Press; 1975. 1.

    Google Scholar 

  2. Shewchun J, Loferski J, Beaulieu R, Chapman G, Garside B. The A I1−y B I y CIIID VI2x E VI2(1−x) pentenary alloy system and its application to photovoltaic solar energy conversion. J Appl Phys. 1979;50(11):6978.

    Article  Google Scholar 

  3. Jaffe J, Zunger A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys Rev B. 1984;29(4):1882.

    Article  Google Scholar 

  4. Kuhn B, Kaefer W, Fess K, Friemelt K, Turner Ch, Wendl M, Bucher E. Thermoelectric properties of CuIn1-xGa x Te2 single crystals. Physica (A). 1997;162:661.

    Google Scholar 

  5. Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder GJ, Harnwunggmoung A, Sugahara T, Ohishi Y. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv Mater. 2012;24(27):3622.

    Article  Google Scholar 

  6. Kosuga A, Plirdpring T, Higashine R, Matsuzawa M, Kurosaki K, Yamanaka S. High-temperature thermoelectric properties of Cu1−xInTe2 with a chalcopyrite structure. Appl Phys Lett. 2012;100(4):042108.

    Article  Google Scholar 

  7. Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S. Thermoelectric properties of Ag1−xGaTe2 with chalcopyrite structure. Appl Phys Lett. 2011;99(6):061902.

    Article  Google Scholar 

  8. Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem Commun. 2012;48(32):3818.

    Article  Google Scholar 

  9. Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J. High thermoelectric performance of solid solutions CuGa1−xIn x Te2 (x = 0–1.0). Appl Phys Lett. 2012;100(23):231903.

    Article  Google Scholar 

  10. Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv Mater. 2014;26(23):3848.

    Article  Google Scholar 

  11. Burger A, Ndap JO, Cui Y, Roy U, Morgan S, Chattopadhyay K, Ma X, Faris K, Thibaud S, Miles R. Preparation and thermophysical properties of AgGaTe2 crystals. J Cryst Growth. 2001;225(2):505.

    Article  Google Scholar 

  12. Guittard M, Rivet J, Mazurier A, Jaulmes S, Fourcroy P. Intermediate phases, structural determination and phase-diagram of the system Ag2Te–Ga2Te3. Mater Res Bull. 1988;23(2):217.

    Article  Google Scholar 

  13. Wei SH, Ferreira LG, Zunger A. First-principles calculation of the order-disorder transition in chalcopyrite semiconductors. Phys Rev B. 1992;45(5):2533.

    Article  Google Scholar 

  14. Wu HJ, Dong ZJ. Phase diagram of ternary Cu–Ga–Te system and thermoelectric properties of chalcopyrite CuGaTe2 materials. Acta Mater. 2016;118:331.

    Article  Google Scholar 

  15. Yang J, Chen S, Du Z, Liu X, Cui J. Lattice defects and thermoelectric properties: the case of p-type CuInTe2 chalcopyrite on introduction of zinc. Dalton Trans. 2014;43(40):15228.

    Article  Google Scholar 

  16. Cheng N, Liu R, Bai S, Shi X, Chen L. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. J Appl Phys. 2014;115(16):163705.

    Article  Google Scholar 

  17. Kumagai M, Kurosaki K, Ohishi Y, Muta H, Yamanaka S. Effect of ball-milling conditions on thermoelectric properties of polycrystalline CuGaTe2. Mater Trans. 2014;55(8):1215.

    Article  Google Scholar 

  18. Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007;130:15.

    Article  Google Scholar 

  19. Avon JE, Yoodee K, Woolley JC. Solid solution, lattice parameter values, and effects of electronegativity in the (Cu1−xA x )(Ga1−yIn y )(Se1−zTe z )2 alloys. J Appl Phys. 1984;55(2):524.

    Article  Google Scholar 

  20. McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W, Ettlinger L, Hubbard CR. Standard X-ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. 1986;1(2):64.

    Article  Google Scholar 

  21. Guittard M, Rivet J, Alapini F, Chilouet A, Loireau-Lozac’h AM. Description du système ternaire Ag–Ga–Te. J Less Common Met. 1991;170(2):373.

    Article  Google Scholar 

  22. Frueh A. The use of Zone theory in problems of sulfide mineralogy. 3, polymorphism of Ag2Te and Ag2S. Am Miner. 1961;46(5–6):654.

    Google Scholar 

  23. Yvon K, Bezinge A, Tissot P, Fischer P. Structure and magnetic properties of tetragonal silver (I, III) oxide, AgO. J Solid State Chem. 1986;65(2):225.

    Article  Google Scholar 

  24. Kistaiah P, Venudhar Y, Sathyanarayana Murthy K, Iyengar L, Krishna Rao K. Anomalous thermal expansion of silver gallium telluride. J Appl Crystallogr. 1981;14(5):281.

    Article  Google Scholar 

  25. Masse G, Djessas K, Yarzhou L. Study of CuGa(Se, Te)2 bulk materials and thin films. J Appl Phys. 1993;74(2):1376.

    Article  Google Scholar 

  26. Pashinkin A, Fedorov V. Phase equilibria in the Cu–Te system. Inorg Mater. 2003;39(6):539.

    Article  Google Scholar 

  27. Bodnar I, Orlova N. Lattice thermal expansion in CuGaT2 and CuInTe2 compounds over the temperature range 80 to 650 K from X-ray diffracion data. Cryst Res Technol. 1986;21(8):1091.

    Article  Google Scholar 

  28. Neumann H. Trends in the thermal expansion coefficients of the AIBIIIC VI2 and AIIBIVC V2 chalcopyrite compounds. Cryst Res Technol. 1980;15(7):849.

    Google Scholar 

  29. Pohl J, Albe K. Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory. Phys Rev B. 2013;87(24):245203.

    Article  Google Scholar 

  30. Shen J, Chen Z, Lin S, Zheng L, Li W, Pei Y. Single parabolic band behavior of thermoelectric p-type CuGaTe2. J Mater Chem C. 2016;4(1):209.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Grant-in-Aid for Young Scientists (A) (No. 15H05548) of Japan, JST PRESTO of Japan (No. JPMJPR17R4) and the Program to Support Research Activities of Female Researchers in Osaka Prefecture University in Japan. Synchrotron radiation experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; Proposal Nos. 2014B1334, 2015A1363 and 2015B1377). We thank Prof. S. Yamanaka’s group at Osaka University, Japan for hot pressing AgGaTe2 and CuGaTe2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Kosuga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosuga, A., Fujii, Y. & Horie, A. High-temperature formation phases and crystal structure of hot-pressed thermoelectric compounds with chalcopyrite-type structure. Rare Met. 37, 360–368 (2018). https://doi.org/10.1007/s12598-018-1031-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1031-0

Keywords

Navigation