Skip to main content
Log in

Crystal orientation in Ni–Mn–In melt-spun ribbons

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The crystal orientation of Ni50Mn25In25 and Ni50Mn34In16 melt-spun ribbons which appears parent phase at room temperature was investigated in this paper. The grains grow perpendicular to the surface of the ribbon and show columnar crystals distinctly. X-ray diffraction and electron backscattered diffraction were used to identify the orientation information of the ribbons. It is indicated that the well-developed preferred orientation of these columnar crystals is parallel to <001> direction, and this is in accordance with that in other shape memory ribbons, which was named as Eucken–Hirsch texture. This kind of texture predicts that it is beneficial to the magnetic field-induced strain compared with the common polycrystals. The results obtained in this paper provide reference for the preparation of Ni–Mn–In melt-spun ribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(7079):957.

    Article  CAS  Google Scholar 

  2. Recarte V, Pérez-Landazábal JI, Sánchez-Alarcos V, Rodríguez-Velamazán JA. Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni–Mn–In metamagnetic shape memory alloys. Acta Mater. 2012;60(5):1937.

    Article  CAS  Google Scholar 

  3. Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Magnetic and martensitic transformations of NiMnX(X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85(19):8879.

    Article  Google Scholar 

  4. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Manosa L, Planes A, Suard E, Ouladdiaf B. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B. 2006;73(17):174413.

    Article  Google Scholar 

  5. Tan CL, Huang YW, Tian XH, Jiang JX, Cai W. Origin of magnetic properties and martensitic transformation of Ni–Mn–In magnetic shape memory alloys. Appl Phys Lett. 2012;100(13):132402.

    Article  Google Scholar 

  6. Yan HL, Zhang YD, Xu N, Senyshyn A, Brokmeier H-G, Esling C, Zhao X, Zuo L. Crystal structure determination of incommensurate modulated martensite in Ni–Mn–In Heusler alloys. Acta Mater. 2015;88:375.

    Article  CAS  Google Scholar 

  7. Huang YJ, Hu QD, Hou JW, Li JG. High isothermal internal friction over a large temperature range for dual-phase Ni–Mn–In magnetic shape memory alloy. Scripta Mater. 2014;87:21.

    Article  CAS  Google Scholar 

  8. Miyamoto T, Ito W, Umetsu RY, Kainuma R, Kanomata T, Ishida K. Phase stability and magnetic properties of Ni50Mn50-xInx Heusler-type alloys. Scripta Mater. 2010;62(3):151.

    Article  CAS  Google Scholar 

  9. Ullakko K, Huang JK, Kantner C, Ohandley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69(13):117637.

    Article  Google Scholar 

  10. O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys. 1998;83(6):367094.

    Article  Google Scholar 

  11. Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett. 2000;77(6):886–8.

    Article  CAS  Google Scholar 

  12. Schlagel DL, Wu YL, Zhang W, Lograsso TA. Chemical segregation during bulk single crystal preparation of Ni–Mn–Ga ferromagnetic shape memory alloys. J Alloy Compd. 2000;312(1–2):1016.

    Google Scholar 

  13. Liang T, Jiang CB, Xu HB, Liu ZH, Zhang M, Cui YT, Wu GH. Phase transition strain and large magnetic field induced strain in Ni50.5Mn24Ga25.5 unidirectionally solidified alloy. J Magn Magn Mater. 2004;268((1–2)):1016.

    Google Scholar 

  14. Liu Y. The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater. 2015;95:022.

    Article  Google Scholar 

  15. Bhattacharya K, Kohn RV. Texture and the recoverable strain of shape memory polycrystals. Acta Mater. 1996;44(2):529.

    Article  CAS  Google Scholar 

  16. O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys. 1998;83(6):3263.

    Article  Google Scholar 

  17. Zhang XX, Qian MF, Zhang Z, Wei LS, Geng L. Magnetostructural coupling and magnetocaloric effect in Ni–Mn–Ga–Cu microwires. Appl Phys Lett. 2016;108(5):052401.

    Article  Google Scholar 

  18. Qian MF, Zhang XX, Wei LS, Martin PG, Sun JF, Geng L, Scott TB, Panina LV, Peng HX. Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process. J Alloys Compd. 2016;660:244.

    Article  CAS  Google Scholar 

  19. Sanchez Llamazares JL, Sanchez T, Santos JD. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl Phys Lett. 2008;92(1):2827179.

    Article  Google Scholar 

  20. Hernando B, Sánchez Llamazares JL, Santos JD, Sánchez ML, Escoda Ll, Suñol JJ, Varga R, García C, González J. Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: martensitic transformation and magnetic properties. J Magn Magn Mater. 2009;321(7):763.

    Article  CAS  Google Scholar 

  21. Zhao XG, Hsieh CC, Lai JH, Cheng XJ, Chang WC, Cui WB, Liu W, Zhang ZD. Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni–Mn–In ribbons. Scripta Mater. 2010;63(2):250.

    Article  CAS  Google Scholar 

  22. Liu J, Scheerbaum N, Hinz D, Gutfleisch O. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl Phys Lett. 2008;92(16):2913162.

    Article  Google Scholar 

  23. Bruno NM, Huang YJ, Dennis CL, Li JG, Shull RD, Jr Ross J H, Chumlyakov YI, Karaman I. Effect of grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons. J Appl Phys. 2016;120(7):28781380.

    Article  Google Scholar 

  24. Balagna C, Fais A, Brunelli K, Peruzzo L, Horynova M, Celko L, Spriano S. Electro-sinter-forged Ni–Ti alloy. Intermetallics. 2016;68:31.

    Article  CAS  Google Scholar 

  25. Gao F, Yang SJ, Li JJ, Qin MJ, Zhang Y, Sun HJ. Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method. Ceram Int. 2015;41(1):127.

    Article  CAS  Google Scholar 

  26. Garcia CB, Arizab E, Tavares CJ, Villechaise P. Electron backscatter diffraction analysis of ZnO: Al thin films. Appl Surf Sci. 2012;259:590.

    Article  CAS  Google Scholar 

  27. Wilkinson AJ, Britton TB. Strains, planes, and EBSD in materials science. Mater Today. 2012;15(9):366–76.

    Article  CAS  Google Scholar 

  28. Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73(17):174413.

    Article  Google Scholar 

  29. Feng Y, Sui JH, Gao ZY, Dong GF, Cai W. Microstructure, phase transitions and mechanical properties of Ni50Mn34In16−yCoy alloys. J Alloys Compd. 2009;476(1–2):935.

    Article  CAS  Google Scholar 

  30. Cai W, Feng Y, Sui JH, Gao ZY, Dong GF. Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons. Scripta Mater. 2008;58(10):830.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51301134 and 51401122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Fang, C., Ai, YL. et al. Crystal orientation in Ni–Mn–In melt-spun ribbons. Rare Met. 42, 1398–1402 (2023). https://doi.org/10.1007/s12598-018-1026-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1026-x

Keywords

Navigation