Advertisement

Rare Metals

pp 1–5 | Cite as

Crystal orientation in Ni–Mn–In melt-spun ribbons

  • Yan Feng
  • Chen Fang
  • Yan-Ling Ai
  • Hai-Bo Wang
  • Li Gao
  • Hong Chen
  • Xiao-Hai Bian
Article

Abstract

The crystal orientation of Ni50Mn25In25 and Ni50Mn34In16 melt-spun ribbons which appears parent phase at room temperature was investigated in this paper. The grains grow perpendicular to the surface of the ribbon and show columnar crystals distinctly. X-ray diffraction and electron backscattered diffraction were used to identify the orientation information of the ribbons. It is indicated that the well-developed preferred orientation of these columnar crystals is parallel to <001> direction, and this is in accordance with that in other shape memory ribbons, which was named as Eucken–Hirsch texture. This kind of texture predicts that it is beneficial to the magnetic field-induced strain compared with the common polycrystals. The results obtained in this paper provide reference for the preparation of Ni–Mn–In melt-spun ribbons.

Keywords

Shape memory alloys Texture Rapid solidification Microstructure Electron backscattered diffraction (EBSD) 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51301134 and 51401122).

References

  1. [1]
    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(7079):957.CrossRefGoogle Scholar
  2. [2]
    Recarte V, Pérez-Landazábal JI, Sánchez-Alarcos V, Rodríguez-Velamazán JA. Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni–Mn–In metamagnetic shape memory alloys. Acta Mater. 2012;60(5):1937.CrossRefGoogle Scholar
  3. [3]
    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Magnetic and martensitic transformations of NiMnX(X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85(19):8879.CrossRefGoogle Scholar
  4. [4]
    Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Manosa L, Planes A, Suard E, Ouladdiaf B. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B. 2006;73(17):174413.CrossRefGoogle Scholar
  5. [5]
    Tan CL, Huang YW, Tian XH, Jiang JX, Cai W. Origin of magnetic properties and martensitic transformation of Ni–Mn–In magnetic shape memory alloys. Appl Phys Lett. 2012;100(13):132402.CrossRefGoogle Scholar
  6. [6]
    Yan HL, Zhang YD, Xu N, Senyshyn A, Brokmeier H-G, Esling C, Zhao X, Zuo L. Crystal structure determination of incommensurate modulated martensite in Ni–Mn–In Heusler alloys. Acta Mater. 2015;88:375.CrossRefGoogle Scholar
  7. [7]
    Huang YJ, Hu QD, Hou JW, Li JG. High isothermal internal friction over a large temperature range for dual-phase Ni–Mn–In magnetic shape memory alloy. Scripta Mater. 2014;87:21.CrossRefGoogle Scholar
  8. [8]
    Miyamoto T, Ito W, Umetsu RY, Kainuma R, Kanomata T, Ishida K. Phase stability and magnetic properties of Ni50Mn50-xInx Heusler-type alloys. Scripta Mater. 2010;62(3):151.CrossRefGoogle Scholar
  9. [9]
    Ullakko K, Huang JK, Kantner C, Ohandley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69(13):117637.CrossRefGoogle Scholar
  10. [10]
    O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys. 1998;83(6):367094.Google Scholar
  11. [11]
    Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett. 2000;77(6):886–8.CrossRefGoogle Scholar
  12. [12]
    Schlagel DL, Wu YL, Zhang W, Lograsso TA. Chemical segregation during bulk single crystal preparation of Ni–Mn–Ga ferromagnetic shape memory alloys. J Alloy Compd. 2000;312(1–2):1016.Google Scholar
  13. [13]
    Liang T, Jiang CB, Xu HB, Liu ZH, Zhang M, Cui YT, Wu GH. Phase transition strain and large magnetic field induced strain in Ni50.5Mn24Ga25.5 unidirectionally solidified alloy. J Magn Magn Mater. 2004;268((1–2)):1016.Google Scholar
  14. [14]
    Liu Y. The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater. 2015;95:022.CrossRefGoogle Scholar
  15. [15]
    Bhattacharya K, Kohn RV. Texture and the recoverable strain of shape memory polycrystals. Acta Mater. 1996;44(2):529.CrossRefGoogle Scholar
  16. [16]
    O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys. 1998;83(6):3263.CrossRefGoogle Scholar
  17. [17]
    Zhang XX, Qian MF, Zhang Z, Wei LS, Geng L. Magnetostructural coupling and magnetocaloric effect in Ni–Mn–Ga–Cu microwires. Appl Phys Lett. 2016;108(5):052401.CrossRefGoogle Scholar
  18. [18]
    Qian MF, Zhang XX, Wei LS, Martin PG, Sun JF, Geng L, Scott TB, Panina LV, Peng HX. Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process. J Alloys Compd. 2016;660:244.CrossRefGoogle Scholar
  19. [19]
    Sanchez Llamazares JL, Sanchez T, Santos JD. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl Phys Lett. 2008;92(1):2827179.CrossRefGoogle Scholar
  20. [20]
    Hernando B, Sánchez Llamazares JL, Santos JD, Sánchez ML, Escoda Ll, Suñol JJ, Varga R, García C, González J. Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: martensitic transformation and magnetic properties. J Magn Magn Mater. 2009;321(7):763.CrossRefGoogle Scholar
  21. [21]
    Zhao XG, Hsieh CC, Lai JH, Cheng XJ, Chang WC, Cui WB, Liu W, Zhang ZD. Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni–Mn–In ribbons. Scripta Mater. 2010;63(2):250.CrossRefGoogle Scholar
  22. [22]
    Liu J, Scheerbaum N, Hinz D, Gutfleisch O. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl Phys Lett. 2008;92(16):2913162.CrossRefGoogle Scholar
  23. [23]
    Bruno NM, Huang YJ, Dennis CL, Li JG, Shull RD, Jr Ross J H, Chumlyakov YI, Karaman I. Effect of grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons. J Appl Phys. 2016;120(7):28781380.CrossRefGoogle Scholar
  24. [24]
    Balagna C, Fais A, Brunelli K, Peruzzo L, Horynova M, Celko L, Spriano S. Electro-sinter-forged Ni–Ti alloy. Intermetallics. 2016;68:31.CrossRefGoogle Scholar
  25. [25]
    Gao F, Yang SJ, Li JJ, Qin MJ, Zhang Y, Sun HJ. Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method. Ceram Int. 2015;41(1):127.CrossRefGoogle Scholar
  26. [26]
    Garcia CB, Arizab E, Tavares CJ, Villechaise P. Electron backscatter diffraction analysis of ZnO: Al thin films. Appl Surf Sci. 2012;259:590.CrossRefGoogle Scholar
  27. [27]
    Wilkinson AJ, Britton TB. Strains, planes, and EBSD in materials science. Mater Today. 2012;15(9):366–76.CrossRefGoogle Scholar
  28. [28]
    Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73(17):174413.CrossRefGoogle Scholar
  29. [29]
    Feng Y, Sui JH, Gao ZY, Dong GF, Cai W. Microstructure, phase transitions and mechanical properties of Ni50Mn34In16−yCoy alloys. J Alloys Compd. 2009;476(1–2):935.CrossRefGoogle Scholar
  30. [30]
    Cai W, Feng Y, Sui JH, Gao ZY, Dong GF. Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons. Scripta Mater. 2008;58(10):830.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.College of Physics and Electronic EngineeringTaizhou UniversityTaizhouChina
  3. 3.College of Engineering Science and TechnologyShanghai Ocean UniversityShanghaiChina

Personalised recommendations