Rare Metals

pp 1–7 | Cite as

Microstructure and mechanical property of Mg–10Gd–2Y–1.5Zn–0.5Zr alloy processed by eight-pass equal-channel angular pressing

  • Huan Liu
  • Jia Ju
  • Xiao-Wei Yang
  • Yu-Hua Li
  • Jing-Hua Jiang
  • Ai-Bin Ma


In this work, a high-strength Mg–10Gd–2Y–1.5Zn–0.5Zr (wt%) alloy was prepared via eight passes of equal-channel angular pressing (ECAP). The microstructures and mechanical properties of as-cast and ECAP alloys were systematically investigated by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electronic universal testing machine. The obtained results indicate that the microstructure of as-cast alloy consists of α-Mg dendrite, network Mg3(Gd,Y,Zn) phase and lamellar 14H long-period stacking ordered (LPSO) phase which is precipitated near the boundary of Mg3(Gd,Y,Zn) networks. After eight-pass ECAP, the network Mg3(Gd,Y,Zn) phase is deformed and broken. However, the refined Mg3(Gd,Y,Zn) particles are not distributed uniformly in the matrix, but still aggregated at the interdendritic area. Moreover, the content of 14H lamellas increases obviously, and they become bent and kinked during severe deformation. DRX is activated in the region between Mg3(Gd,Y,Zn) particles and 14H clusters. Compression test at room temperature indicates that the ECAP alloy exhibits excellent mechanical property with compressive strength of 518 MPa and fracture strain of 21.6%. The comprehensive high strength and toughness could be ascribed to the refined Mg3(Gd,Y,Zn) particles, DRX grains and kinked 14H LPSO phase.


Mg–Gd–Y–Zn–Zr Long-period stacking ordered phase Equal-channel angular pressing Compression strength Fracture strain 



This study was financially supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20160869), the Nantong Science and Technology Project (No. GY12015009) and the Fundamental Research Funds for the Central Universities (No. 2015B01314).


  1. [1]
    Zheng XB, Liu K, Wang ZH, Li SB, Du WB. Microstructural control and hardening response of Mg–6Zn–0.5Er–0.5Ca alloy. Rare Met. 2016;35(7):526.CrossRefGoogle Scholar
  2. [2]
    Xu DK, Han EH, Xu YB. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: a review. Prog Nat Sci Mater. 2016;26(2):117.CrossRefGoogle Scholar
  3. [3]
    Qiu X, Yang Q, Guan K, Bu FQ, Cao ZY, Liu YB, Meng J. Microstructures and tensile properties of Mg–Zn–(Gd)–Zr alloys extruded at various temperatures. Rare Met. 2017;36(12):962.CrossRefGoogle Scholar
  4. [4]
    Wen K, Du WB, Liu K, Wang ZH, Li SB. Microstructures and mechanical properties of homogenization and isothermal aging Mg–Gd–Er–Zn–Zr alloy. Rare Met. 2016;35(6):443.CrossRefGoogle Scholar
  5. [5]
    Zhang JS, Chen CJ, Que ZP, Cheng WL, Xu JD, Kang JJ. 18R and 14H long-period stacking ordered structures in the Mg93.96Zn2Y4Sr0.04 alloy and the modification effect of Sr on X-phase. Mater Sci Eng A. 2012;552:81.CrossRefGoogle Scholar
  6. [6]
    Leng Z, Zhang JH, Sun JF, Shi HY, Liu SJ, Zhang L, Zhang ML, Wu RZ. Notch tensile behavior of extruded Mg–Y–Zn alloys containing long period stacking ordered phase. Mater Des. 2014;56:495.CrossRefGoogle Scholar
  7. [7]
    Liu H, Xue F, Bai J, Zhou J. Microstructure and mechanical properties of a Mg94Y4Ni2 alloy with long period stacking ordered structure. J Mater Eng Perform. 2013;22(11):3500.CrossRefGoogle Scholar
  8. [8]
    Lapovok R, Gao X, Nie JF, Estrin Y, Mathaudhu SN. Enhancement of properties in cast Mg–Y–Zn rod processed by severe plastic deformation. Mater Sci Eng A. 2014;615:198.CrossRefGoogle Scholar
  9. [9]
    Yang Q, Xiao BL, Zhang Q, Zheng MY, Ma ZY. Exceptional high-strain-rate superplasticity in Mg–Gd–Y–Zn–Zr alloy with long-period stacking ordered phase. Scr Mater. 2013;69(11–12):801.Google Scholar
  10. [10]
    Xu C, Xu SW, Zheng MY, Wu K, Wang ED, Kamado S, Wang GJ, Lv XY. Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. J Alloys Compd. 2012;524:46.CrossRefGoogle Scholar
  11. [11]
    Chen B, Lin DL, Zeng XQ, Lu C. Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pressing. J Alloys Compd. 2007;440(1–2):94.CrossRefGoogle Scholar
  12. [12]
    Zhang JS, Chen CJ, Cheng WL, Bian LP, Wang HX, Xu CX. High-strength Mg93.96Zn2Y4Sr0.04 alloy with long-period stacking ordered structure. Mater Sci Eng A. 2013;559:416.CrossRefGoogle Scholar
  13. [13]
    Lu FM, Ma AB, Jiang JH, Yang DH, Yuan YC, Zhang LY. Formation of profuse long period stacking ordered microcells in Mg–Gd–Zn–Zr alloy during multipass ECAP process. J Alloys Compd. 2014;601:140.CrossRefGoogle Scholar
  14. [14]
    Liu H, Ju J, Lu FM, Yan JL, Bai J, Jiang JH, Ma AB. Dynamic precipitation behavior and mechanical property of an Mg94Y4Zn2 alloy prepared by multi-pass successive equal channel angular pressing. Mater Sci Eng A. 2017;682:255.CrossRefGoogle Scholar
  15. [15]
    Jiang HS, Qiao XG, Xu C, Zheng MY, Wu K, Kamado S. Ultrahigh strength as-extruded Mg–10.3Zn–6.4Y–0.4Zr–0.5Ca alloy containing W phase. Mater Des. 2016;108:391.CrossRefGoogle Scholar
  16. [16]
    Yu ZJ, Huang YD, Qiu X, Wang GF, Meng FZ, Hort N, Meng J. Fabrication of a high strength Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy by thermomechanical treatments. Mater Sci Eng A. 2015;622:121.CrossRefGoogle Scholar
  17. [17]
    Wang JF, Song PF, Huang S, Pan FS. Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg–9Gd–xEr–1.6Zn–0.6Zr magnesium alloys. Mater Sci Eng A. 2013;563:36.CrossRefGoogle Scholar
  18. [18]
    Yin DD, Wang QD, Gao Y, Chen CJ, Zheng J. Effects of heat treatments on microstructure and mechanical properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt%) alloy. J Alloys Compd. 2011;509(5):1696.CrossRefGoogle Scholar
  19. [19]
    Zhang JH, Leng Z, Liu SJ, Li JQ, Zhang ML, Wu RZ. Microstructure and mechanical properties of Mg–Gd–Dy–Zn alloy with long period stacking ordered structure or stacking faults. J Alloys Compd. 2011;509(29):7717.CrossRefGoogle Scholar
  20. [20]
    Wu YJ, Lin DL, Zeng XQ, Peng LM, Ding WJ. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg–Gd–Zn–Zr alloy. J Mater Sci. 2009;44(6):1607.CrossRefGoogle Scholar
  21. [21]
    Liu H, Xue F, Bai J, Ma AB, Jiang JH. Formation behavior of 14H long period stacking ordered structure in Mg–Y–Zn cast alloys with different α-Mg fractions. J Mater Sci Technol. 2016;32(12):1267.CrossRefGoogle Scholar
  22. [22]
    Zhu YM, Morton AJ, Nie JF. The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater. 2010;58(8):2936.CrossRefGoogle Scholar
  23. [23]
    Liu H, Bai J, Yan K, Yan JL, Ma AB, Jiang JH. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg–Y–Zn alloys during annealing at 773K. Mater Des. 2016;93:9.CrossRefGoogle Scholar
  24. [24]
    Zhu YM, Morton AJ, Nie JF. Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 2012;60(19):6562.CrossRefGoogle Scholar
  25. [25]
    Shao XH, Yang ZQ, Ma XL. Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 2010;58(14):4760.CrossRefGoogle Scholar
  26. [26]
    Wang JF, Song PF, Zhou XE, Huang XF, Pan FS. Influence of the morphology of long-period stacking ordered phase on the mechanical properties of as-extruded Mg–5Zn–5Y–0.6Zr magnesium alloy. Mater Sci Eng A. 2012;556:68.CrossRefGoogle Scholar
  27. [27]
    Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda HY, Umakoshi Y. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 2010;58(19):6282.CrossRefGoogle Scholar
  28. [28]
    Qiu X, Yang Q, Cao ZY, Liu YB, Meng J. Microstructure and mechanical properties of Mg–Zn–(Nd)–Zr alloys with different extrusion processes. Rare Met. 2016;35(11):841.CrossRefGoogle Scholar
  29. [29]
    Wu YJ, Peng LM, Zeng XQ, Lin DL, Ding WJ, Peng YH. A high-strength extruded Mg–Gd–Zn–Zr alloy with superplasticity. J Mater Res. 2009;24(12):3696.CrossRefGoogle Scholar
  30. [30]
    Yang Q, Xiao BL, Wang D, Zheng MY, Ma ZY. Study on distribution of long-period stacking ordered phase in Mg–Gd–Y–Zn–Zr alloy using friction stir processing. Mater Sci Eng A. 2015;626:275.CrossRefGoogle Scholar
  31. [31]
    Hagihara K, Okamoto T, Yamasaki M, Kawamura Y, Nakano T. Electron backscatter diffraction pattern analysis of the deformation band formed in the Mg-based long-period stacking ordered phase. Scr Mater. 2016;117:32.CrossRefGoogle Scholar
  32. [32]
    Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Long period stacking structures observed in Mg97Zn1Y2 alloy. Scr Mater. 2004;51(2):107.CrossRefGoogle Scholar
  33. [33]
    Hagihara K, Kinoshita A, Fukusumi Y, Yamasaki M, Kawamura Y. High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase. Mater Sci Eng A. 2013;560:71.CrossRefGoogle Scholar
  34. [34]
    Liu H, Xue F, Bai J, Sun YS. Effect of heat treatments on the microstructure and mechanical properties of an extruded Mg95.5Y3Zn1.5 alloy. Mater Sci Eng A. 2013;585:261.CrossRefGoogle Scholar
  35. [35]
    Yu ZJ, Huang YD, Gan WM, Mendis CL, Zhong ZY, Brokmeier HG, Hort N, Meng J. Microstructure evolution of Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy during deformation and its effect on strengthening. Mater Sci Eng A. 2016;657:259.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanics and MaterialsHohai UniversityNanjingChina
  2. 2.Suqian Research Institute of Hohai UniversitySuqianChina
  3. 3.College of Materials EngineeringNanjing Institute of TechnologyNanjingChina

Personalised recommendations