Rare Metals

pp 1–8 | Cite as

Electrophoretic deposition of chitosan–bioglass®–hydroxyapatite–halloysite nanotube composite coating

Article
  • 28 Downloads

Abstract

The composite coatings of chitosan (CS)–bioglass® (BG)–hydroxyapatite (HA)–halloysite nanotube (HNT) were investigated and produced via electrophoretic deposition (EPD) technique. The utilization of CS as a dispersing, blending and charging agent for ceramic particles, including BG, HA and HNT, allowed the formation of CS–BG/HA/HNT composite, functionally graded composite (FGC) and bilayer film containing different layers. The results of scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) illustrate the composite in the form of the optimum distribution of ceramic components in the CS matrix with thickness of 28 µm on titanium (Ti) substrate. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests indicate that the corrosion resistance of the coated sample increases in corrected simulated body fluid (C-SBF) at 37 °C. Finally, the apatite-inducing ability of CS–BG–HA–HNT is proved by the formation of carbonated hydroxyapatite particles on composite coating in C-SBF.

Keywords

Four-component coating Composites Biomaterials Electrophoretic deposition Corrosion 

References

  1. [1]
    Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7(11):3813.CrossRefGoogle Scholar
  2. [2]
    Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg. 2010;39(7):690.CrossRefGoogle Scholar
  3. [3]
    Caridade SG, Merino EG, Alves NM, Mano JF. Biomineralization in chitosan/Bioglass® composite membranes under different dynamic mechanical conditions. Mater Sci Eng C. 2013;33(7):4480.CrossRefGoogle Scholar
  4. [4]
    Abdal-hay A, Barakat N, Kyoo Lim J. Influence of electrospinning and dip-coating techniques on the degradation and cytocompatibility of Mg-based alloy. Colloids Surf A Physicochem Eng Asp. 2013;420:37.CrossRefGoogle Scholar
  5. [5]
    Pinheiro AC, Bourbon AI, Quintas MAC, Coimbra MA, Vicente AA. Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innov Food Sci Emerg Technol. 2012;16:227.CrossRefGoogle Scholar
  6. [6]
    Wang Y, Pang X, Zhitomirsky I. Electrophoretic deposition of chiral polymers and composites. Colloids Surf B Biointerfaces. 2011;87(2):505.CrossRefGoogle Scholar
  7. [7]
    Li Y, Wu K, Zhitomirsky I. Electrodeposition of composite zinc oxide–chitosan films. Colloids Surf A Physicochem Eng Asp. 2010;356(1):63.CrossRefGoogle Scholar
  8. [8]
    Laxmidhar B, Meilin L. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52(1):1.CrossRefGoogle Scholar
  9. [9]
    Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22.CrossRefGoogle Scholar
  10. [10]
    Liang D, Lu Zh, Yang H, Gao J, Chen R. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces. 2016;8(2):3958.CrossRefGoogle Scholar
  11. [11]
    Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R. Enhanced antibacterial and wound healing activities of microporous chitosan–Ag/ZnO composite dressing. Carbohydr Polym. 2017;156:460.CrossRefGoogle Scholar
  12. [12]
    Su CH, Yang H, Song Sh, Lu B, Chen R. A magnetic superhydrophilic/oleophobic sponge for continuous oil–water separation. Chem Eng J. 2017;309:366.CrossRefGoogle Scholar
  13. [13]
    George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1.CrossRefGoogle Scholar
  14. [14]
    Hench LL. The story of bioglass. J Mater Sci Mater Med. 2006;17(11):967.CrossRefGoogle Scholar
  15. [15]
    Batmanghelich F, Ghorbani M. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan–hydroxyapatite–carbon nanotube composite coatings. Ceram Int. 2013;5(5):5393.CrossRefGoogle Scholar
  16. [16]
    Fu C, Song B, Wan CH, Savino K, Wang Y, Zhang X, Yates MZ. Electrochemical growth of composite hydroxyapatite coatings for controlled release. Surf Coat Technol. 2015;276:618.CrossRefGoogle Scholar
  17. [17]
    Fu C, Zhang X, Savino K, Gabrys P, Gao Y, Chaimayo W, Miller BL, Yates MZ. Antimicrobial silver–hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf Coat Technol. 2016;301:13.CrossRefGoogle Scholar
  18. [18]
    Krause D, Thomas B, Leinenbachb Ch, Eifler D, Minaya EJ, Boccaccini AR. The electrophoretic deposition of Bioglass\®particles on stainless steel and Nitinol substrates. Surf Coat Technol. 2006;200(16):4835.CrossRefGoogle Scholar
  19. [19]
    Mirsalehi SA, Sattari M, Khavandi A, Mirdamadi S, Naimi-Jamal MR. Tensile and biocompatibility properties of synthesized nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposite. J Compos Mater. 2015;13:1.Google Scholar
  20. [20]
    Molaei A, Amadeh A, Yari M, Afshar MR. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Mater Sci Eng C. 2016;59:740.CrossRefGoogle Scholar
  21. [21]
    Mirsalehi SA, Khavandi A, Mirdamadi S, Naimi-Jamal MR, Kalantari SM. Nanomechanical and tribological behavior of hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposites for biomedical applications. J Appl Polym Sci. 2015;132(23):42052.CrossRefGoogle Scholar
  22. [22]
    Molaei A, Yari M, Afshar MR. Modification of electrophoretic deposition of chitosan-bioactive glass-hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceram Int. 2015;41(10):14537.CrossRefGoogle Scholar
  23. [23]
    Deen I, Zhitomirsky I. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films. J Alloy Compd. 2014;586:531.CrossRefGoogle Scholar
  24. [24]
    Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol. 2010;11(3):820.CrossRefGoogle Scholar
  25. [25]
    Zhang Y, Chen Y, Zhang H, Zhang B, Liu J. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem. 2013;118:59.CrossRefGoogle Scholar
  26. [26]
    Sun X, Zhang Y, Shen H, Jia N. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. Electrochim Acta. 2010;56(2):700.CrossRefGoogle Scholar
  27. [27]
    Kamble R, Ghag M, Gaikawad S, Panda BK. Halloysite nanotubes and applications: a review. J Adv Sci Res. 2012;3(2):25.Google Scholar
  28. [28]
    Ducheyne P, Van Raemdonck W, Heughebaert JC, Heughebaert M. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials. 1986;7(2):97.CrossRefGoogle Scholar
  29. [29]
    Zhitomirsky I, Hashambhoy A. Chitosan-mediated electrosynthesis of organic–inorganic nanocomposites. J Mater Process Technol. 2007;191(1):68.CrossRefGoogle Scholar
  30. [30]
    Buhl S, Leinenbach C, Spolenak R, Wegener K. Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond-metal joints. J Mater Sci. 2010;45(16):4358.CrossRefGoogle Scholar
  31. [31]
    Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite–chitosan coatings. Mater Charact. 2007;58(4):339.CrossRefGoogle Scholar
  32. [32]
    Zhitomirsky D, Roether JA, Boccaccini AR, Zhitomirsky I. Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol. 2009;209(4):1853.CrossRefGoogle Scholar
  33. [33]
    Deen I, Pang X, Zhitomirsky I. Electrophoretic deposition of composite chitosan–halloysite nanotube–hydroxyapatite films. Colloids Surf A. 2012;410:38.CrossRefGoogle Scholar
  34. [34]
    Naghib SM, Ansari M, Pedram A, Moztarzadeh F, Feizpour A, Mozafari M. Bioactivation of 304 stainless steel surface through 45S5 bioglass coating for biomedical applications. Int J Electrochem Sci. 2012;7:2890.Google Scholar
  35. [35]
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907.CrossRefGoogle Scholar
  36. [36]
    Ehteshamzadeh M. Introduction to application of EIS in corrosion study, vol. 29. 1st ed. Kerman: Shahid Bahonar University Press; 2007, 19.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Materials Science and Metallurgical EngineeringSemnan UniversitySemnanIran
  2. 2.Department of Materials Engineering, Tehran Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations