Skip to main content
Log in

NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Using stable inorganic solid electrolyte to replace organic liquid electrolyte could significantly reduce potential safety risks of rechargeable batteries. Na-superionic conductor (NASICON)-structured solid electrolyte is one of the most promising sodium solid electrolytes and can be employed in solid-state sodium batteries. In this work, a NASICON-structured solid electrolyte Na3.1Zr1.95Mg0.05Si2PO12 was synthesized through a facile solid-state reaction, yielding high sodium-ionic conductivity of 1.33 × 10−3 S·cm−1 at room temperature. The results indicate that Mg2+ is a suitable and economical substitution ion to replace Zr4+, and this synthesis route can be scaled up for powder preparation with low cost. In addition to electrolyte material preparation, solid-state batteries with Na3.1Zr1.95Mg0.05Si2PO12 as electrolyte were assembled. A specific capacity of 57.9 mAh·g−1 is maintained after 100 cycles under a current density of 0.5C rate at room temperature. The favorable cycling performance of the solid-state battery suggests that Na3.1Zr1.95Mg0.05Si2PO12 is an ideal electrolyte candidate for solid-state sodium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2009;22(3):587.

    Article  Google Scholar 

  2. Kim Y, Kim H, Park S, Seo I, Kim Y. Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries. Electrochim Acta. 2016;191:1.

    Article  Google Scholar 

  3. Zhao C, Lu Y, Li Y, Jiang L, Rong X, Hu YS, Li H, Chen L. Novel methods for sodium-ion battery materials. Small Methods. 2017;1(5):1600063.

    Article  Google Scholar 

  4. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energ Environ Sci. 2012;5(3):5884.

    Article  Google Scholar 

  5. Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energ Environ Sci. 2013;6(3):734.

    Article  Google Scholar 

  6. Song S, Duong HM, Korsunsky AM, Hu N, Lu L. A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep. 2016;6:32330.

    Article  Google Scholar 

  7. Bui KM, Dinh VA, Okada S, Ohno T. Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study. Phys Chem Chem Phys. 2016;18(39):27226.

    Article  Google Scholar 

  8. Song W, Wu Z, Chen J, Lan Q, Zhu Y, Yang Y, Pan C, Hou H, Jing M, Ji X. High-voltage NASICON sodium ion batteries: merits of fluorine insertion. Electrochim Acta. 2014;146:142.

    Article  Google Scholar 

  9. Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.

    Article  Google Scholar 

  10. Liu GQ, Li Y, Du YL, Wen L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2 oxide used as cathode material for sodium ion batteries. Rare Met. 2017;36(12):977.

    Article  Google Scholar 

  11. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S. A review of lithium and non-lithium based solid state batteries. J Power Sour. 2015;282:299.

    Article  Google Scholar 

  12. Vignarooban K, Kushagra R, Elango A, Badami P, Mellander BE, Xu X, Tucker TG, Nam C, Kannan AM. Current trends and future challenges of electrolytes for sodium-ion batteries. Int J Hydrogen Energ. 2016;41(4):2829.

    Article  Google Scholar 

  13. Che H, Chen S, Xie Y, Wang H, Amine K, Liao XZ, Ma ZF. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energ Environ Sci. 2017;10(5):1075.

    Article  Google Scholar 

  14. Zhou W, Li Y, Xin S, Goodenough JB. Rechargeable sodium all-solid-state battery. ACS Central Sci. 2017;3(1):52.

    Article  Google Scholar 

  15. Jian Z, Hu YS, Ji X, Chen W. NASICON-structured materials for energy storage. Adv Mater. 2017;29(20):1601925.

    Article  Google Scholar 

  16. Fergus JW. Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics. 2012;227:102.

    Article  Google Scholar 

  17. Anantharamulu N, Rao KK, Rambabu G, Kumar BV, Radha V, Vithal M. A wide-ranging review on Nasicon type materials. J Mater Sci. 2011;46(9):2821.

    Article  Google Scholar 

  18. Goodenough JB, Hong HYP, Kafalas JA. Fast Na+-ion transport in skeleton structures. Mater Res Bull. 1976;11(2):203.

    Article  Google Scholar 

  19. Hong HYP. Crystal structures and crystal chemistry in the system Na1+xZr2Si x P3−xO12. Mater Res Bull. 1976;11(2):173.

    Article  Google Scholar 

  20. Kim JJ, Yoon K, Park I, Kang K. Progress in the development of sodium-ion solid electrolytes. Small Methods. 2017;1(10):1700219.

    Article  Google Scholar 

  21. Guin M, Tietz F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries. J Power Sour. 2015;273:1056.

    Article  Google Scholar 

  22. Ma Q, Guin M, Naqash S, Tsai CL, Tietz F, Guillon O. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors. Chem Mater. 2016;28(13):4821.

    Article  Google Scholar 

  23. Guin M, Dashjav E, Kumar CMN, Tietz F, Guillon O. Investigation of crystal structure and ionic transport in a scandium-based NASICON material by neutron powder diffraction. Solid State Sci. 2017;67:30.

    Article  Google Scholar 

  24. Vogel EM, Cava RJ, Rietman E. Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1 + xHf2Si x P3 − xO12. Solid State Ionics. 1984;14(1):1.

    Article  Google Scholar 

  25. Mu L, Xu S, Li Y, Hu YS, Li H, Chen L, Huang X. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv Mater. 2015;27(43):6928.

    Article  Google Scholar 

  26. Ruan Y, Song S, Liu J, Liu P, Cheng B, Song X, Battaglia V. Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions. Ceram Int. 2017;43(10):7810.

    Article  Google Scholar 

  27. Park H, Jung K, Nezafati M, Kim CS, Kang B. Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: effects of excess sodium. ACS Appl Mater Inter. 2016;8(41):27814.

    Article  Google Scholar 

  28. Khakpour Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3 + xZr2 − xM x Si2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity. Electrochim Acta. 2016;196:337.

    Article  Google Scholar 

  29. Bell NS, Edney C, Wheeler JS, Ingersoll D, Spoerke ED. The influences of excess sodium on low-temperature NaSICON synthesis. J Am Ceram Soc. 2014;97(12):3744.

    Article  Google Scholar 

  30. Lee JS, Chang CM, Lee YIL, Lee JH, Hong SH. Spark plasma sintering (SPS) of NASICON ceramics. J Am Ceram Soc. 2004;87(2):305.

    Article  Google Scholar 

  31. Noi K, Suzuki K, Tanibata N, Hayashi A, Tatsumisago M. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive. J Am Ceram Soc. 2017;101(3):1255.

    Article  Google Scholar 

  32. Shimizu Y, Ushijima T. Sol–gel processing of NASICON thin film using aqueous complex precursor. Solid State Ionics. 2000;132(1–2):143.

    Article  Google Scholar 

  33. Guin M, Tietz F, Guillon O. New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na3 + xSc2Si x P3 − xO12. Solid State Ionics. 2016;293:18.

    Article  Google Scholar 

  34. Zhang QQ, Ding F, Sun WB, Sang L. Preparation of LAGP/P(VDF-HFP) polymer electrolytes for Li-ion batteries. RSC Adv. 2015;5(80):65395.

    Article  Google Scholar 

  35. Yoshima K, Harada Y, Takami N. Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. J Power Sour. 2016;302:283.

    Article  Google Scholar 

  36. Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y, Cui G, Chen L. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater. 2015;5(24):1501082.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. 2016YFB0100105), Strategic Priority Program of the Chinese Academy of Sciences (No. XDA09010203), Zhejiang Provincial Natural Science Foundation of China (Nos. LD18E020004, LY18E020018 and LY18E030011) and the Youth Innovation Promotion Association CAS (No. 2017342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-Yin Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wan, HL., Zhang, ZH. et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 37, 480–487 (2018). https://doi.org/10.1007/s12598-018-1020-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1020-3

Keywords

Navigation