Rare Metals

, Volume 37, Issue 4, pp 300–307 | Cite as

Rapid fabrication and thermoelectric performance of SnTe via non-equilibrium laser 3D printing

  • Tian-Le Chen
  • Chuang Luo
  • Yong-Gao Yan
  • Ji-Hui Yang
  • Qing-Jie Zhang
  • Ctirad Uher
  • Xin-Feng Tang
Article
  • 43 Downloads

Abstract

Thermoelectric technologies based on Seebeck and Peltier effects, as energy techniques able to directly convert heat into electricity and vice versa, hold promise for addressing the global energy and environmental problems. The development of efficient and low-cost thermoelectric modules is the key to their large-scale commercial applications. In this paper, using a non-equilibrium laser 3D printing technique, we focus an attention on the fabrication of mid-temperature p-type SnTe thermoelectric materials. The influence of laser power, scanning speed and layer thickness on the macro-defects, chemical and phase composition, microstructure and thermoelectric performance was systematically investigated. First and foremost, the processing parameter window for printing a high-quality layer is determined. This is followed by the finite element method used to simulate and verify the influence of the laser-induced molten pool temperature distribution on the final composition and microstructure. Finally, the high-performance SnTe layer with 10 mm × 10 mm in area is produced within seconds with room temperature Seebeck coefficient close to that of SnTe manufactured by the traditional methods. Consequently, this work lays a solid foundation for the future fabrication of thermoelectric modules using laser non-equilibrium printing techniques.

Keywords

Selective laser melting Laser non-equilibrium heating SnTe compound Thermoelectric performance 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51401153 and 51772232) and the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities of China (No. B07040).

References

  1. [1]
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.CrossRefGoogle Scholar
  2. [2]
    Sootsman JR, Chung DY, Kanatzidis MG. New and old concepts in thermoelectric materials. Angew Chem Int Edit. 2009;48(46):8616.CrossRefGoogle Scholar
  3. [3]
    Zhao LD, Zhang X, Wu HJ, Tan GJ, Pei YL, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong SK, Uher C, He JQ, Kanatzidis MG. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc. 2016;138(7):2366.CrossRefGoogle Scholar
  4. [4]
    Yang JH, Caillat T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006;31(3):224.CrossRefGoogle Scholar
  5. [5]
    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang XF, Uher C. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Adv Mater. 2017;29(20):1602013.CrossRefGoogle Scholar
  6. [6]
    Ulrich MD, Barnes PA, Vining CB. Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration. J Appl Phys. 2001;90(3):1625.CrossRefGoogle Scholar
  7. [7]
    Wu HJ, Chang C, Feng D, Xiao Y, Zhang X, Pei YL, Zheng L, Wu D, Gong SK, Chen Y, He JQ, Kanatzidis MG, Zhao LD. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy Environ Sci. 2015;8(11):3298.CrossRefGoogle Scholar
  8. [8]
    Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD. Thermoelectric devices for power generation: recent progress and future challenges. Adv Eng Mater. 2016;18(2):194.CrossRefGoogle Scholar
  9. [9]
    LeBlanc S, Yee SK, Scullin ML, Dames C, Goodson KE. Material and manufacturing cost considerations for thermoelectrics. Renew Sustain Energy Rev. 2014;32(5):313.CrossRefGoogle Scholar
  10. [10]
    Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol. 2013;67(5–8):1191.CrossRefGoogle Scholar
  11. [11]
    King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, Rubenchik AM. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev. 2015;2(4):041304.CrossRefGoogle Scholar
  12. [12]
    Quan ZZ, Wu A, Keefe M, Qin XH, Yu JY, Suhr J, Byun JH, Kim BS, Chou TW. Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Mater Today. 2015;18(9):503.CrossRefGoogle Scholar
  13. [13]
    Vaezi M, Seitz H, Yang SF. Erratum to: a review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol. 2013;67(5–8):1721.CrossRefGoogle Scholar
  14. [14]
    Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133.CrossRefGoogle Scholar
  15. [15]
    Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des. 2016;89:1294.CrossRefGoogle Scholar
  16. [16]
    Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2(4):041101.CrossRefGoogle Scholar
  17. [17]
    Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech Eng. 2015;8(3):215.CrossRefGoogle Scholar
  18. [18]
    Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng G-J Aerosp. 2015;229(11):2132.CrossRefGoogle Scholar
  19. [19]
    Music D, Geyer RW, Keuter P. Thermomechanical response of thermoelectrics. Appl Phys Lett. 2016;109(22):223903.CrossRefGoogle Scholar
  20. [20]
    Harrison NJ, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater. 2015;94:59.CrossRefGoogle Scholar
  21. [21]
    Tan GJ, Shi FY, Doak JW, Sun H, Zhao LD, Wang PL, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci. 2014;8(1):267.CrossRefGoogle Scholar
  22. [22]
    Pei YZ, Zheng LL, Li W, Lin SQ, Chen ZW, Wang YY, Xu XF, Yu HL, Chen Y, Ge BH. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Adv Electron Mater. 2016;2(6):1600019.CrossRefGoogle Scholar
  23. [23]
    Zhang Q, Liao BL, Lan YC, Lukas K, Liu WS, Esfarjani K, Opeil C, Broido D, Chen G, Ren ZF. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci USA. 2013;110(33):13261.CrossRefGoogle Scholar
  24. [24]
    Zhou YM, Wu HJ, Pei YL, Chang C, Xiao Y, Zhang X, Gong SK, He JQ, Zhao LD. Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2. Acta Mater. 2017;125:542.CrossRefGoogle Scholar
  25. [25]
    Su XL, Fu F, Yan YG, Zheng G, Liang T, Zhang Q, Cheng XD, Yang W, Chi H, Tang XF, Zhang QJ, Uher C. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun. 2014;5:4908.CrossRefGoogle Scholar
  26. [26]
    Liang T, Su XL, Tan XM, Zheng G, She XY, Yan YG, Tang XF, Uher C. Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1−xTe thermoelectrics by SHS-PAS processing. J Mater Chem C. 2015;3(33):8550.CrossRefGoogle Scholar
  27. [27]
    Tang HH, Chiu ML, Yen HC. Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc. 2011;31(8):1383.CrossRefGoogle Scholar
  28. [28]
    Zocca A, Colombo P, Gunster J, Muhler T, Heinrich JG. Selective laser densification of lithium aluminosilicate glass ceramic tapes. Appl Surf Sci. 2013;265(1):610.CrossRefGoogle Scholar
  29. [29]
    Yadroitsev I, Bertrand P, Smurov I. Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci. 2007;254(4):8064.CrossRefGoogle Scholar
  30. [30]
    Dong L, Makradi A, Ahzi S, Remond Y. Finite element analysis of temperature and density distributions in selective laser sintering process. Mater Sci Forum. 2007;553(3):75.CrossRefGoogle Scholar
  31. [31]
    Huang Y, Yang LJ, Du XZ, Yang YP. Finite element analysis of thermal behavior of metal powder during selective laser melting. Int J Therm Sci. 2016;104:146.CrossRefGoogle Scholar
  32. [32]
    Sharma RC, Chang YA. The Se–Sn (selenium-tin) system. Bull Alloy Phase Diagr. 1986;7(1):72.CrossRefGoogle Scholar
  33. [33]
    Dean JA. Lange’s handbook of chemistry. Adv Manuf Process. 2010;5(4):687.CrossRefGoogle Scholar
  34. [34]
    Rombouts M, Froyen L, Gusarov AV, Bentefour EH, Glorieux C. Photopyroelectric measurement of thermal conductivity of metallic powders. J Appl Phys. 2005;97(2):024905.CrossRefGoogle Scholar
  35. [35]
    Fedorov VI, Machuev VI. Ferromagnetic resonance in a thin conducting magnetic film. Sov Phys J. 1969;12(11):1498.CrossRefGoogle Scholar
  36. [36]
    Tan GJ, Zhao LD, Shi FY, Doak JW, Lo SH, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc. 2014;136(19):7006.CrossRefGoogle Scholar
  37. [37]
    Suzuki N, Sawai K, Adachi S. Optical properties of PbSe. J Appl Phys. 1995;77(3):1249.CrossRefGoogle Scholar
  38. [38]
    Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi S. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des. 2016;89:255.CrossRefGoogle Scholar
  39. [39]
    Smurov I, Yadroitsava I, Yadroitsev I, Bertrand P. Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp J. 2012;18(3):201.CrossRefGoogle Scholar
  40. [40]
    Gu DD, Shen YF. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des. 2009;30(8):2903.CrossRefGoogle Scholar
  41. [41]
    Zhou X, Wang DZ, Liu XH, Zhang DD, Qu SL, Ma J, London G, Shen ZJ, Liu W. 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Mater. 2015;98(2):1.CrossRefGoogle Scholar
  42. [42]
    Li R, Liu J, Shi Y, Wang L. Jiang Wei. Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol. 2012;59(9–12):1025.CrossRefGoogle Scholar
  43. [43]
    Gu DD, Hagedorn YC, Meiners W, Meng GB, Batista RJS, Wissenbach K, Poprawe R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012;60(9):3849.CrossRefGoogle Scholar
  44. [44]
    Brebrick RF, Strauss AJ. Partial pressures in equilibrium with Group IV Tellurides II Tin Telluride. J Chem Phys. 1964;41(1):197.CrossRefGoogle Scholar
  45. [45]
    Wei KW, Wang ZM, Zeng XY. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Mater Lett. 2015;156(18):187.CrossRefGoogle Scholar
  46. [46]
    Xie WJ, He J, Kang HJ, Tang XF, Zhu S, Laver M, Wang SY, Copley JRD, Brown CM, Zhang QJ, Tritt TM. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 2010;10(9):3283.CrossRefGoogle Scholar
  47. [47]
    Zhang X, Wang DY, Wu HJ, Yin MJ, Pei YL, Gong SK, Huang L, Pennycook SJ, He JQ, Zhao LD. Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy Environ Sci. 2017;10(11):2420.CrossRefGoogle Scholar
  48. [48]
    Dai DH, Gu DD. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int J Mach Tool Manuf. 2016;100:14.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA
  3. 3.Department of PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations