Skip to main content

Advertisement

Log in

Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-performance solid polymer electrolyte (SPE) has long been desired for the next-generation high energy density and safe rechargeable lithium batteries. A SPE composed of 80 wt% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 20% poly(ethylene carbonate) (PEC) and a polyamide (PA) fiber membrane backbone was prepared by solution-casting method. This solid electrolyte exhibits quite high ionic conductivity and lithium ion transference number (t+), and excellent mechanical strength. The as-prepared solid electrolyte shows good wettability to porous electrodes during cycles, which is beneficial to form ionically conductive phase throughout porous electrodes. All-solid-state LiFePO4|Li cells assembled with the as-prepared solid electrolyte deliver a high initial discharge specific capacity of 125.7 mAh·g−1 and good cycling stability at 55 °C (93.4% retention at 1C after 200 cycles), and superior cycle performance. Outstanding electrochemical performance can be mainly ascribed to the improved ionic conductivity in the entire porous electrodes due to the good wettability of SPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evarts EC. Lithium batteries: to the limits of lithium. Nature. 2015; 526(7575): S93-5.

  2. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.

    Article  Google Scholar 

  3. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu LB, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol. 2012;7(5):310.

    Article  Google Scholar 

  4. Lin DC, Lu ZD, Hsu PC, Lee HR, Liu N, Zhao J, Wang HT, Liu C, Cui Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ Sci. 2015;8(8):2371.

    Article  Google Scholar 

  5. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen XL, Shao YY, Engelhard MH, Nie ZM, Xiao J, Liu XJ, Sushko PV, Liu J, Zhang JG. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013;135(11):4450.

    Article  Google Scholar 

  6. Yan K, Lee HW, Gao T, Zheng GY, Yao HB, Wang HT, Lu ZD, Zhou Y, Liang Z, Liu ZF, Chu S, Cui Y. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014;14(10):6016.

    Article  Google Scholar 

  7. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8(4):320.

    Article  Google Scholar 

  8. Deng LZ, Wu F, Gao XG, Wu WP. Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 2014. https://doi.org/10.1007/s12598-014-0316-1.

    Google Scholar 

  9. Su D, Cortie M, Fan H, Wang G. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium–sulfur batteries. Adv Mater. 2017;5(24):1501082.

    Google Scholar 

  10. Hao YC, Xiong DB, Liu W, Fan LL, Li DJ, Li XF. Controllably designed “vice-electrode” interlayers harvesting high performance lithium sulfur batteries. ACS Appl Mater Interfaces. 2017;9(46):40273.

    Article  Google Scholar 

  11. Park K, Cho JH, Jang JH, Yu BC, Andreah T, Miller KM, Ellison CJ, Goodenough JB. Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy Environ Sci. 2015;8(8):2389.

    Article  Google Scholar 

  12. Auvergniot J, Cassel A, Ledeuil JB, Viallet V, Seznec V, Dedryvère R. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem Mater. 2017;29(9):3883.

    Article  Google Scholar 

  13. Lee S, Cho Y, Song HK, Lee KT, Cho J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem Int Ed. 2012;51(35):8748.

    Article  Google Scholar 

  14. Liu XG, Tan J, Fu J, Yuan RX, Wen H, Zhang CH. Facile synthesis of nanosized Lithium-ion-conducting solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 and its mechanical nanocomposites with LiMn2O4 for enhanced cyclic performance in lithium ion batteries. ACS Appl Mater Interfaces. 2017;9(13):11696.

    Article  Google Scholar 

  15. Tao XY, Liu YY, Liu W, Zhou GM, Zhao J, Lin DC, Zu CX, Sheng OW, Zhang WK, Lee HW, Cui Y. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 2017;17(5):2967.

    Article  Google Scholar 

  16. Keller M, Appetecchi GB, Kim GT, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J Power Sour. 2017;353(6):287.

    Article  Google Scholar 

  17. Wang YF, Wang LX, Yuan QB, Chen J, Niu YJ, Xu XW, Cheng YT, Yao B, Wang Q, Wang H. Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization. Nano Energy. 2018;44(2):364.

    Google Scholar 

  18. Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J Am Chem Soc. 2016;138(49):15825.

    Article  Google Scholar 

  19. Wang QJ, Jian ZX, Song WL, Zhang SC, Fan LZ. Facile fabrication of safe and robust polyimide fibrous membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester gel electrolytes for lithium-ion batteries. Electrochim Acta. 2014;149(12):176.

    Article  Google Scholar 

  20. Fan LZ, Nan CW, Zhao SJ. Effect of modified SiO2 on properties of PEO-based polymer electrolytes. Solid State Ion. 2003;164(12):81.

    Article  Google Scholar 

  21. Devaux D, Glé D, Phan TNT, Gigmes D, Giroud E, Deschamps M, Denoyel R, Bouchet R. Optimization of block copolymer electrolytes for lithium metal batteries. Chem Mater. 2015;27(13):4682.

    Article  Google Scholar 

  22. Chen L, Liu YC, Fan LZ. Enhanced interface stability of polymer electrolytes using organic cage-type cucurbit [6] uril for lithium metal batteries. J Electrochem Soc. 2017;164(9):A1834.

    Article  Google Scholar 

  23. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114(23):11503.

    Article  Google Scholar 

  24. Wang QJ, Song WL, Wang LN, Song Y, Shi Q, Fan LZ. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim Acta. 2014;132(6):538.

    Article  Google Scholar 

  25. Wang QJ, Song WL, Fan LZ, Song Y. Flexible, high-voltage and free-standing composite polymer electrolyte membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for lithium-ion batteries. J Membr Sci. 2015;492(10):490.

    Article  Google Scholar 

  26. Diederichsen KM, McShane EJ, McCloskey BD. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017;2(11):2563.

    Article  Google Scholar 

  27. Ghosh A, Wang C, Kofinas P. Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc. 2010;157(7):A846.

    Article  Google Scholar 

  28. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104(10):4303.

    Article  Google Scholar 

  29. Tominaga Y, Yamazaki K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun. 2014;50(34):4448.

    Article  Google Scholar 

  30. Okumura T, Nishimura S. Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ion. 2014;267(12):68.

    Article  Google Scholar 

  31. Kimura K, Matsumoto H, Hassoun J, Panero S, Scrosati B, Tominaga Y. A quaternarypoly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl) imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim Acta. 2015;175(9):134.

    Article  Google Scholar 

  32. Morioka T, Ota K, Tominaga Y. Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes. Polymer. 2016;84(2):21.

    Article  Google Scholar 

  33. Zhang JJ, Zhao JH, Yue LP, Wang QF, Chai JC, Liu ZH, Zhou XH, Li H, Guo YG, Cui GL, Chen LQ. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater. 2015;5(24):1501082.

    Article  Google Scholar 

  34. Zhao JH, Zhang JJ, Hu P, Ma J, Wang XG, Yue LP, Xu GJ, Qin BS, Liu ZH, Zhou XH, Cui GL. A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim Acta. 2016;188(1):23.

    Article  Google Scholar 

  35. Sun B, Mindemark J, Edström K, Brandell D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion. 2014;262(9):7–38.

    Google Scholar 

  36. Silva MM, Barros SC, Smith MJ, MacCallum JR. Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim Acta. 2004;49(12):1887.

    Article  Google Scholar 

  37. Shim J, Kim DG, Kim HJ, Lee JH, Baik JH, Lee JC. Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J Mater Chem A. 2014;2(34):13873.

    Article  Google Scholar 

  38. Wang AL, Xu H, Zhou Q, Liu X, Li ZY, Gao R, Wu N, Guo YG, Li HY, Zhang LY. A new all-solid-state hyperbranched star polymer electrolyte for lithium ion batteries: synthesis and electrochemical properties. Electrochim Acta. 2016;212(9):372.

    Article  Google Scholar 

  39. Lim SK, Setiawan L, Bae TH, Wang R. Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure. J Membr Sci. 2016;501(3):152.

    Article  Google Scholar 

  40. Kong X, Zhou MY, Lin CE, Wang J, Zhao B, Wei XZ, Zhu BK. Polyamide/PVC based composite hollow fiber nanofiltration membranes: effect of substrate on properties and performance. J Membr Sci. 2016;505(5):231.

    Article  Google Scholar 

  41. Evans J, Vincent CA, Bruce PG. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer. 1987;28(13):2324.

    Article  Google Scholar 

  42. Wu XL, Guo YG, Su J, Xiong JW, Zhang YL, Wan LJ. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv Energy Mater. 2013;3(9):1155.

    Article  Google Scholar 

  43. Zhong SK, Wu L, Liu JQ. Sol-gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. Electrochim Acta. 2012;74(7):8.

    Article  Google Scholar 

  44. Wang QJ, Song WL, Fan LZ, Song Y. Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. J Membr Sci. 2015;486(7):21.

    Article  Google Scholar 

  45. Sun B, Liao IY, Tan S, Bowden T, Brandell D. Solid polymer electrolyte coating from a bifunctional monomer for three-dimensional microbattery applications. J Power Sour. 2013;238(9):435.

    Article  Google Scholar 

  46. Wetjen M, Navarra MA, Panero S, Passerini S, Scrosati B, Hassoun J. Composite poly(ethylene oxide) electrolytes plasticized by N-Alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl) imide for lithium batteries. Chemsuschem. 2013;6(6):1037.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Scientific Foundation of China (No. 51532002), Beijing Natural Science Foundation (No. L172023), the National Basic Research Program of China (No. 2015CB932500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhen Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZJ., Fan, LZ. Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries. Rare Met. 37, 488–496 (2018). https://doi.org/10.1007/s12598-018-1017-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1017-y

Keywords

Navigation