Rare Metals

pp 1–6 | Cite as

Ideal tensile strength of chromium by first-principles method

  • Feng Li
  • Jia-Xiang Shang


The ideal tensile strengths of Cr along [001], [110] and [111] directions were calculated based on the first-principles method. The results show that the ideal tensile strengths are 30.83, 37.2 and 35.49 GPa for anti-ferromagnetic Cr, while they are 33.09, 47.15 and 38.11 GPa for non-magnetic Cr along [001], [110] and [111] directions, respectively. It is obvious that [001] is the weakest direction. When the loading is applied on the direction [001], the ideal tensile strength is reached before the shear instability for both the anti-ferromagnetic and non-magnetic Cr; thus, Cr fails by cleavage and it is deemed to be intrinsically brittle. Meanwhile, for the anti-ferromagnetic Cr, the correlation between the magnetic moment and volume was analyzed, and the result shows that the magnetic moment increases with the increase in volume and eventually disappears with the increase in strain. In addition, the density of states in the process of loading was also discussed.


First-principles Chromium Theoretical tensile strength Electron theory 



This study was financially supported by the National Natural Science Foundation of China (No. 51371017).


  1. [1]
    Song Y, Yang R, Li D, Wu WT, Guo ZX. Calculation of theoretical strengths and bulk moduli of bcc metals. Phys Rev B. 1999;59(22):14220.CrossRefGoogle Scholar
  2. [2]
    Dimiduk DM, Perepezko JH. Mo–Si–B alloys: developing a revolutionary turbine-engine material. MRS Bull Sci. 2003;28(9):639.CrossRefGoogle Scholar
  3. [3]
    Zinkle SJ, Ghoniem NM. Operating temperature windows for fusion reactor structural materials. Fusion Eng Des. 2000;51–52:55.CrossRefGoogle Scholar
  4. [4]
    Luo WD, Roundy D, Cohen ML, Morris JW Jr. Ideal strength of bcc molybdenum and niobium. Phys Rev B. 2002;66(9):094110.CrossRefGoogle Scholar
  5. [5]
    Pugh SF. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1953;45(367):823.CrossRefGoogle Scholar
  6. [6]
    Chen KY, Zhao LR, Rodgers J, Tse JS. Alloying effects on elastic properties of TiN-based nitrides. Phys D Appl Phys. 2003;36(21):2725.CrossRefGoogle Scholar
  7. [7]
    Chen KY, Zhao LR, Tse JS. Ab initio study of elastic properties of Ir and Ir 3 X compounds. Appl Phys. 2003;93(5):2414.CrossRefGoogle Scholar
  8. [8]
    Pettifor DG. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol. 1992;8(4):345.CrossRefGoogle Scholar
  9. [9]
    Liang Q, Chrzan DC. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys Rev Lett. 2014;112(11):115503.CrossRefGoogle Scholar
  10. [10]
    Sob M, Wang LG, Vitek V. Theoretical tension stress in tungsten single crystals by full-potential first-principles calculations. Mater Sci Eng A. 1997;234–236:1075.CrossRefGoogle Scholar
  11. [11]
    Roundy D, Krenn CR, Cohen ML, Morris JW Jr. The ideal strength of tungsten. Philos Mag A. 2001;81(7):1725.CrossRefGoogle Scholar
  12. [12]
    Liu ZH, Shang JX. Elastic properties of Nb-based alloys by using the density functional theory. Chin Phys B. 2012;21(1):016202.CrossRefGoogle Scholar
  13. [13]
    Liu YL, Zhang HB, Zhang Y. Ideal mechanical properties of vanadium by a first-principles computational tensile test. J Nucl Mater. 2011;416(3):345.CrossRefGoogle Scholar
  14. [14]
    Gandhi G, Ashby MF. Overview no. 5: fracture-mechanism maps for materials which cleave: F.C.C., B.C.C. and H.C.P. metals and ceramics. Acta Metal. 1979;27(10):1565.CrossRefGoogle Scholar
  15. [15]
    Kong LT, Liu BX. Correlation of magnetic moment versus spacing distance of metastable fcc structured iron. Appl Phys Lett. 2004;84(18):3627.CrossRefGoogle Scholar
  16. [16]
    Trampenau J, Petry W, Herzig C. Temperature dependence of the lattice dynamics of chromium. Phys Rev B. 1993;47(6):3132.CrossRefGoogle Scholar
  17. [17]
    Li XQ, SchÖnecker S, Vitos L. Anomalous ideal tensile strength of ferromagnetic Fe and Fe-rich alloys. Phys Rev B. 2014;90(2):024201.CrossRefGoogle Scholar
  18. [18]
    Friak M, Sob M, Vitek V. Ab initio calculation of tensile strength in iron. Philos Mag. 2003;83(31–34):3529.CrossRefGoogle Scholar
  19. [19]
    Clatterbuck DM, Chrzan DC, Morris JW Jr. The ideal strength of iron in tension and shear. Acta Mater. 2003;51(8):2271.CrossRefGoogle Scholar
  20. [20]
    Liu YL, Zhang Y, Hong RJ, Lu GH. Study of the theoretical tensile strength of Fe by a first-principles computational tensile test. Chin Phys B. 2009;18(5):1923.CrossRefGoogle Scholar
  21. [21]
    Persson PES, Johansson LI. Bulk band structure of chromium. Phys Rev B. 1986;34(4):2284.CrossRefGoogle Scholar
  22. [22]
    Guo GY, Wang HH. Calculated elastic constants and electronic and magnetic properties of bcc, fcc, and hcp Cr crystals and thin films. Phys Rev B. 2000;62(8):5136.CrossRefGoogle Scholar
  23. [23]
    Baum NP, Schroder K. Specific heat of chromium-rich and chromium-nickel and chromium-iron-molybdenum alloys between 1.3 and 4.2 K. Phys Rev B. 1971;3(11):3847.CrossRefGoogle Scholar
  24. [24]
    Reddy YS, Kistaiah P, Reddy CV. Elastic properties of double layered manganites R1.2Sr1.8Mn2O7 (R = La, Pr, Nd, Sm). Rare Met. 2014;33(2):166.CrossRefGoogle Scholar
  25. [25]
    Ma L, Wang X, Shang JX. Effect of Pd in NiTi on the martensitic transformation temperatures and hysteresis: a first-principles study. Acta Phys Sin. 2014;63(23):233103.Google Scholar
  26. [26]
    Beiranwand R. Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles. Rare Met. 2016;35(10):771.CrossRefGoogle Scholar
  27. [27]
    Liu ZH, Shang JX. First principles calculations of electronic properties and mechanical properties of bcc molybdenum and niobium. Rare Met. 2011;30:354.CrossRefGoogle Scholar
  28. [28]
    Orowan E. Fracture and strength of solid. Rept Prog Phys. 1949;12:185.CrossRefGoogle Scholar
  29. [29]
    Liu YL, Zhang Y, Zhou HB, Lu GH, Masanori K. Theoretical strength and charge redistribution of fcc Ni in tension and shear. J Phys Condens Matter. 2008;20(33):335216.CrossRefGoogle Scholar
  30. [30]
    Pokluda J, Cerny M, Sob M, Umeno Y. Ab initio calculations of mechanical properties: methods and applications. Prog Mater Sci. 2015;73:127.CrossRefGoogle Scholar
  31. [31]
    Chen YH, Zhang BW, Zhang CR, Zhang ML, Kang L, Luo YC. First-principle study of H2 adsorption on Ma3N2(110) surface. Chin Phys Lett. 2014;31(6):63101.CrossRefGoogle Scholar
  32. [32]
    Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558.CrossRefGoogle Scholar
  33. [33]
    Perdew JP, Burke K, Erzerhof M. Generalized gradients approximation made simple. Phys Rev Lett. 1996;77(18):3865.CrossRefGoogle Scholar
  34. [34]
    Hepburn DJ, Macleod E, Ackland GJ. Transition metal solute interactions with point defects in fcc iron from first principles. Phys Rev B. 2015;92(1):014110.CrossRefGoogle Scholar
  35. [35]
    Fawcett E, Kaiser AB, White GK. Magnetovolume in chromium. Phys Rev B. 1986;34(9):6248.CrossRefGoogle Scholar
  36. [36]
    Milstein F, Chantasiriwan S. Theoretical study of the response of 12 cubic metals to uniaxial loading. Phys Rev B. 1998;58(10):6006.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations