Rare Metals

, Volume 37, Issue 4, pp 308–315 | Cite as

Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys

  • Ren-Shuang Zhai
  • Ye-Hao Wu
  • Tie-Jun Zhu
  • Xin-Bing Zhao


For zone-melted (ZM) bismuth telluride-based alloys, which are widely commercially available for solid-state cooling and low-temperature power generation around room temperature, introducing point defects is the chief approach to improve their thermoelectric performance. Herein, we report the multiple effects of Se doping on thermoelectric performance of p-type Bi0.5Sb1.5Te3-xSe x + 3 wt% Te ZM ingots, which increases carrier concentration, reduces lattice thermal conductivity and deteriorates the carrier mobility. As a result, the peak figure of merit (ZT) is shifted to a higher temperature and a high ZT ~ 1.2 at 350 K is obtained, due to the reduced thermal conductivity and suppressed intrinsic conduction. Further, decreasing Sb content is followed to optimize the room temperature performance and a ZT ~ 1.1 at 300 K is obtained. These results are significant for designing and optimizing the thermoelectric performance of commercial Bi0.5Sb1.5Te3+ 3 wt% Te ZM alloys.


Thermoelectric materials Bismuth telluride Zone melting Se doping Bi0.5Sb1.5Te3 



This work was supported by the National Natural Science Foundation of China (Nos. 61534001 and 11574267) and the National Science Fund for Distinguished Young Scholars (No.51725102).


  1. [1]
    Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater. 2015;5(17):1500411.CrossRefGoogle Scholar
  2. [2]
    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.CrossRefGoogle Scholar
  3. [3]
    Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.CrossRefGoogle Scholar
  4. [4]
    Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):1605884.CrossRefGoogle Scholar
  5. [5]
    Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.CrossRefGoogle Scholar
  6. [6]
    Wang S, Sun Y, Yang J, Duan B, Wu L, Zhang W, Yang J. High thermoelectric performance in Te-free (Bi, Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ Sci. 2016;9(11):3436.CrossRefGoogle Scholar
  7. [7]
    Fu C, Zhu T, Liu Y, Xie H, Zhao X. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ Sci. 2015;8(1):216.CrossRefGoogle Scholar
  8. [8]
    Delves RT, Bowley AE, Hazelden DW, Goldsmid HJ. Anisotropy of the electric conductivity in bismuth telluride. Proc Phys Soc 1961;78(5):838.CrossRefGoogle Scholar
  9. [9]
    Taylor PJ, Maddux JR, Jesser WA, Rosi FD. Room-temperature anisotropic, thermoelectric, and electrical properties of n-type (Bi2Te3)90(Sb2Te3)5(Sb2Se3)5 and compensated p-type (Sb2Te3)72(Bi2Te3)25(Sb2Se3)3 semiconductor alloys. J Appl Phys. 1999;85(11):7807.CrossRefGoogle Scholar
  10. [10]
    Zhu T, Xu Z, He J, Shen J, Zhu S, Hu L, Tritt TM, Zhao X. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi, Sb)2Te3 thermoelectric materials. J Mater Chem A. 2013;1(38):11589.CrossRefGoogle Scholar
  11. [11]
    Wang S, Tan G, Xie W, Zheng G, Li H, Yang J, Tang X. Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation. J Mater Chem. 2012;22(39):20943.CrossRefGoogle Scholar
  12. [12]
    Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett. 2009;94(10):102111.CrossRefGoogle Scholar
  13. [13]
    Zhao XB, Ji XH, Zhang YH, Zhu TJ, Tu JP, Zhang XB. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett. 2005;86(6):062111.CrossRefGoogle Scholar
  14. [14]
    Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K. BiSbTe-based nanocomposites with high ZT : the effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater. 2013;23(35):4317.CrossRefGoogle Scholar
  15. [15]
    Yan X, Poudel B, Ma Y, Liu WS, Joshi G, Wang H, Lan Y, Wang D, Chen G, Ren ZF. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 2010;10(9):3373.CrossRefGoogle Scholar
  16. [16]
    Wang SY, Xie WJ, Li H, Tang XF. High performance n-type (Bi, Sb)2(Te, Se)3 for low temperature thermoelectric generator. J Phys D Appl Phys. 2010;43(33):335404.CrossRefGoogle Scholar
  17. [17]
    Shen JJ, Zhu TJ, Zhao XB, Zhang SN, Yang SH, Yin ZZ. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric. Energy Environ Sci. 2010;3(10):1519.CrossRefGoogle Scholar
  18. [18]
    Hu LP, Zhu TJ, Wang YG, Xie HH, Xu ZJ, Zhao XB. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 2014;6(2):e88.CrossRefGoogle Scholar
  19. [19]
    Xu ZJ, Hu LP, Ying PJ, Zhao XB, Zhu TJ. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater. 2015;84:385.CrossRefGoogle Scholar
  20. [20]
    Xu Z, Wu H, Zhu T, Fu C, Liu X, Hu L, He J, He J, Zhao X. Attaining high mid-temperature performance in (Bi, Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater. 2016;8(9):e302.CrossRefGoogle Scholar
  21. [21]
    Hu L, Zhu T, Liu X, Zhao X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater. 2014;24(33):5211.CrossRefGoogle Scholar
  22. [22]
    Pan Y, Li JF. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 2016;8(6):e275.CrossRefGoogle Scholar
  23. [23]
    Yim WM, Fitzke EV, Rosi FD. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. J Mater Sci. 1966;1(1):52–65.CrossRefGoogle Scholar
  24. [24]
    Lošt’ák P, Drašar Č, Bachan D, Beneš L, Krejčová A. Defects in Bi2Te3−xSex single crystals. Radiat Eff Defect. S. 2010;165(3):211.Google Scholar
  25. [25]
    Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.CrossRefGoogle Scholar
  26. [26]
    Zhai R, Hu L, Wu H, Xu Z, Zhu TJ, Zhao XB. Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects. ACS Appl Mater Interfaces. 2017;9(34):28577.CrossRefGoogle Scholar
  27. [27]
    Stordeur M, Stolzer M, Sobotta H, Riede V. Investigation of the valence band structure of thermoelectric (Bi1-xSbx)2Te3 single crystals. Phys Stat Sol. 1988;150(1):165.CrossRefGoogle Scholar
  28. [28]
    Xie H, Wang H, Pei Y, Fu C, Liu X, Snyder GJ, Zhao X, Zhu T. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Adv Funct Mater. 2013;23(41):5123.CrossRefGoogle Scholar
  29. [29]
    Fu C, Zhu T, Pei Y, Xie H, Wang H, Snyder GJ, Liu Y, Liu Y, Zhao X. High band degeneracy contributes to high thermoelectric performance in p-type half-heusler compounds. Adv Energy Mater. 2015;4(18):1400600.CrossRefGoogle Scholar
  30. [30]
    Yim WM, Rosi FD. Compound tellurides and their alloys for peltier cooling—a review. Solid State Electron. 1972;15(10):1121.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations