Advertisement

Rare Metals

, Volume 37, Issue 4, pp 333–342 | Cite as

SnSe + Ag2Se composite engineering with ball milling for enhanced thermoelectric performance

  • Dan Feng
  • Yue-Xing Chen
  • Liang-Wei Fu
  • Ju Li
  • Jia-Qing He
Article

Abstract

Earth-abundant IV–VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed by solid solution method followed by spark plasma sintering (SPS) and their thermoelectric properties in two directions were investigated, and then, the performance of composites was further optimized with an additional ball milling. The coexistence of SnSe and Ag2Se phases is clearly confirmed by energy-dispersive X-ray spectroscopy (EDX) in transmission electron microscopy (TEM). After ball milling, the size of SnSe grains as well as the incorporated Ag2Se particles reduces effectively, which synergistically optimizes the electrical and thermal transport properties at high temperature range. As a result, a maximum ZT of ~ 0.74 at 773 K for SnSe + 1.0%Ag2Se in the direction vertical to the pressing direction is achieved. Composite engineering with additional ball milling is thus proved to be an efficient way to improve the thermoelectric properties of SnSe, and this strategy could be applicable to other thermoelectric systems.

Graphical Abstract

Keywords

Thermoelectrics SnSe Composite engineering Ball milling 

Notes

Acknowledgements

This work was financially supported by the National Science Foundation (No. DMR-1410636), the Natural Science Foundation of Guangdong Province (No. 2015A030308001), the Leading Talents of Guangdong Province Program (No. 00201517), the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. JCYJ20150831142508365, KQTD2016022619565991 and KQCX2015033110182370) and the National Natural Science Foundation of China (No. 51632005). This work was also supported by Project funded by China Postdoctoral Science Foundation.

Supplementary material

12598_2017_994_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2503 kb)

References

  1. [1]
    Sootsman JR, Chung DY, Kanatzidis MG. New and old concepts in thermoelectric materials. Angew Chem. 2009;48(46):8616.CrossRefGoogle Scholar
  2. [2]
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.CrossRefGoogle Scholar
  3. [3]
    Qin P, Qian X, Ge ZH, Zheng L, Feng J, Zhao LD. Improvements of thermoelectric properties for p-type Cu1.8S bulk materials via optimizing the mechanical alloying process. Inorg Chem Front. 2017;4(7):1192.CrossRefGoogle Scholar
  4. [4]
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.CrossRefGoogle Scholar
  5. [5]
    Pei YL, Wu H, Wu D, Zheng F, He J. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc. 2014;136(39):13902.CrossRefGoogle Scholar
  6. [6]
    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.CrossRefGoogle Scholar
  7. [7]
    Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.CrossRefGoogle Scholar
  8. [8]
    Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG. Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater. 2010;22(36):3970.CrossRefGoogle Scholar
  9. [9]
    He J, Androulakis J, Kanatzidis MG, Dravid VP. Seeing is believing: weak phonon scattering from nanostructures in alkali metal-doped lead telluride. Nano Lett. 2012;12(1):343.CrossRefGoogle Scholar
  10. [10]
    Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun. 2014;5:4515.Google Scholar
  11. [11]
    Wu H, Carrete J, Zhang Z, Qu Y, Shen X, Wang Z, Zhao LD, He J. Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 2014;6(6):e108.CrossRefGoogle Scholar
  12. [12]
    Girard SN, He J, Zhou X, Shoemaker D, Jaworski CM, Uher C, Dravid VP, Heremans JP, Kanatzidis MG. High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc. 2011;133(41):16588.CrossRefGoogle Scholar
  13. [13]
    He J, Zhao LD, Zheng JC, Doak JW, Wu H, Wang HQ, Lee Y, Wolverton C, Kanatzidis MG, Dravid VP. Role of sodium doping in lead chalcogenide thermoelectrics. J Am Chem Soc. 2013;135(12):4624.CrossRefGoogle Scholar
  14. [14]
    Korkosz RJ, Chasapis TC, Lo SH, Doak JW, Kim YJ, Wu CI, Hatzikraniotis E, Hogan TP, Seidman DN, Wolverton C, Dravid VP, Kanatzidis MG. High ZT in p-type (PbTe)1−2x(PbSe)x(PbS)x thermoelectric materials. J Am Chem Soc. 2014;136(8):3225.CrossRefGoogle Scholar
  15. [15]
    Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1−y)Se(y). J Am Chem Soc. 2012;134(24):10031.CrossRefGoogle Scholar
  16. [16]
    Tan G, Shi F, Hao S, Chi H, Bailey TP, Zhao LD, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J Am Chem Soc. 2015;137(35):11507.CrossRefGoogle Scholar
  17. [17]
    Tan G, Zhao LD, Shi F, Doak JW, Lo SH, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc. 2014;136(19):7006.CrossRefGoogle Scholar
  18. [18]
    Tan G, Shi F, Sun H, Zhao LD, Uher C, Dravid VP, Kanatzidis MG. SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity. J Mater Chem A. 2014;2(48):20849.CrossRefGoogle Scholar
  19. [19]
    Chen Y, Nielsen MD, Gao YB, Zhu TJ, Zhao X, Heremans JP. SnTe–AgSbTe2 thermoelectric alloys. Adv Energy Mater. 2012;2(1):58.CrossRefGoogle Scholar
  20. [20]
    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci USA. 2013;110(33):13261.CrossRefGoogle Scholar
  21. [21]
    Qian XF, Fu L, Li J. Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res. 2015;8(3):967.CrossRefGoogle Scholar
  22. [22]
    Antunez PD, Buckley JJ, Brutchey RL. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale. 2011;3(6):2399.CrossRefGoogle Scholar
  23. [23]
    Chun D, Walser RM, Bené RW, Courtney TH. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl Phys Lett. 1974;24(10):479.CrossRefGoogle Scholar
  24. [24]
    Xue MZ, Yao J, Cheng SC, Fu ZW. Lithium electrochemistry of a novel SnSe thin-film anode. J Electrochem Soc. 2006;153(2):A270.CrossRefGoogle Scholar
  25. [25]
    Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373.CrossRefGoogle Scholar
  26. [26]
    Zhao LD, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2016;351(6269):141.CrossRefGoogle Scholar
  27. [27]
    Chen CL, Wang H, Chen YY, Day T, Snyder GJ. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A. 2014;2(29):11171.CrossRefGoogle Scholar
  28. [28]
    Chere EK, Zhang Q, Dahal K, Cao F, Mao J, Ren Z. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. J Mater Chem A. 2016;4(5):1848.CrossRefGoogle Scholar
  29. [29]
    Ge ZH, Song DS, Chong XY, Zheng FS, Jin L, Qian X, Zheng L, Dunin-Borkowski RE, Qin P, Feng J, Zhao LD. Boosting the thermoelectric performance of (Na, K) co-doped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering. J Am Chem Soc. 2017;139(28):9714.CrossRefGoogle Scholar
  30. [30]
    Li Y, Li F, Dong J, Ge Z, Kang F, He J, Du H, Li B, Li JF. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J Mater Chem C. 2016;4(10):2047.CrossRefGoogle Scholar
  31. [31]
    Feng D, Ge ZH, Wu D, Chen YX, Wu T, Li J, He J. Enhanced thermoelectric properties of SnSe polycrystals via texture control. Phys Chem Chem Phys. 2016;18(46):31821.CrossRefGoogle Scholar
  32. [32]
    Chen YX, Ge ZH, Yin M, Feng D, Huang XQ, Zhao W, He J. Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping. Adv Funct Mater. 2016;26(37):6836.CrossRefGoogle Scholar
  33. [33]
    Sassi S, Candolfi C, Vaney JB, Ohorodniichuk V, Masschelein P, Dauscher A, Lenoir B. Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl Phys Lett. 2014;104(21):105.CrossRefGoogle Scholar
  34. [34]
    Wei TR, Wu CF, Zhang X, Tan Q, Sun L, Pan Y, Li JF. Thermoelectric transport properties of pristine and Na-doped SnSe1−xTex polycrystals. Phys Chem Chem Phys PCCP. 2015;17(44):30102.CrossRefGoogle Scholar
  35. [35]
    Zhang Q, Chere EK, Sun J, Cao F, Dahal K, Chen S, Chen G, Ren Z. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv Energy Mater. 2015;5(12):1500360.CrossRefGoogle Scholar
  36. [36]
    Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X, Li X. Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X = S, Se). Nano Energy. 2016;32:80.CrossRefGoogle Scholar
  37. [37]
    Xing ZB, Li JF. Lead-free AgSn4SbTe6, nanocomposites with enhanced thermoelectric properties by SiC nanodispersion. J Alloys Compd. 2016;687:246.CrossRefGoogle Scholar
  38. [38]
    Ju H, Kim J. Effect of SiC ceramics on thermoelectric properties of SiC/SnSe composites for solid-state thermoelectric applications. Ceram Int. 2016;42(8):9550.CrossRefGoogle Scholar
  39. [39]
    Huang XQ, Chen YX, Yin M, Feng D, He J. Origin of the enhancement in transport properties on polycrystalline SnSe with compositing two-dimensional material MoSe2. Nanotechnology. 2017;28(10):105708.CrossRefGoogle Scholar
  40. [40]
    Leng H, Zhou M, Zhao J, Han Y, Li L. Optimization of thermoelectric performance of anisotropic AgxSn1−xSe compounds. J Electron Mater. 2016;45(1):527.CrossRefGoogle Scholar
  41. [41]
    Lin CC, Lydia R, Yun JH, Lee HS, Rhyee JS. Extremely low lattice thermal conductivity and point defect scattering of phonons in Ag-doped (SnSe)1−x(SnS)x compounds. Chem Mater. 2017;29:5344.CrossRefGoogle Scholar
  42. [42]
    Wiegers GA. Electronic and ionic conduction of solid solutions Ag2−xAuxSe (0 ≤ x≤0.5). J Less Common Metals. 1976;48(2):269.CrossRefGoogle Scholar
  43. [43]
    Ge ZH, Zhang BP, Shang PP, Li JF. Control of anisotropic electrical transport property of Bi2S3 thermoelectric polycrystals. J Mater Chem. 2011;21(25):9194.CrossRefGoogle Scholar
  44. [44]
    Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J, Ikuhara Y. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J Am Chem Soc. 2011;133(13):4661.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.Shenzhen Key Laboratory of Thermoelectric Materials, Department of PhysicsSouth University of Science and Technology of ChinaShenzhenChina
  3. 3.Department of Nuclear Science and Engineering and Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhanChina

Personalised recommendations