Advertisement

Rare Metals

, Volume 37, Issue 4, pp 343–350 | Cite as

Thermoelectric transport properties of Pb–Sn–Te–Se system

  • Bing-Chao Qin
  • Yu Xiao
  • Yi-Ming Zhou
  • Li-Dong Zhao
Article
  • 272 Downloads

Abstract

IV–VI compounds are considered as promising thermoelectric materials, and high thermoelectric performance was achieved in IV–VI solid solutions. In this work, the thermoelectric properties of Pb–Sn–Te–Se-based solid solutions were systematically investigated. Among these solid solutions, it is found that a figure of merit (ZT) peak value of 1.0 at 873 K can be obtained in (PbTe)0.5(SnTe)0.5, on account of the combination of superior electrical properties in SnTe and low thermal conductivity in PbTe. Furthermore, we investigated and summarized the thermoelectric transport properties and proposed the thermoelectric performance maps for the IV–VI solid solutions in Pb–Sn–Te–Se system. This comprehensive investigation on Pb–Sn–Te–Se-based solid solutions can effectively guide and scan thermoelectric performance for a given unknown composition and enhance the thermoelectric properties in IV–VI compounds.

Graphical Abstract

Keywords

Thermoelectric materials Electrical conductivity Thermal conductivity Pb–Sn–Te–Se system Solid solutions 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51671015, 51571007 and 51772012), the 111 project (No. B17002), the Beijing Municipal Science and Technology Commission (No. Z171100002017002) and the Shenzhen Peacock Plan Team (No. KQTD2016022619565991).

Compliance with ethical standards

Ethical standards

On behalf of all the authors, we declare that all the experiments comply with the current laws of the country in which they were performed.

Supplementary material

12598_2017_991_MOESM1_ESM.doc (4.2 mb)
Supplementary material 1 (DOC 4317 kb)

References

  1. [1]
    Zhang X, Zhao LD. Thermoelectric materials: energy conversion between heat and electricity. J Materiomics. 2015;1(2):92.CrossRefGoogle Scholar
  2. [2]
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.CrossRefGoogle Scholar
  3. [3]
    Goldsmid HJ. Introduction to Thermoelectricity. Berlin: Springer; 2010. 1.Google Scholar
  4. [4]
    Zhao LD, Dravid VP, Kanatzidis MG. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci. 2014;7(1):251.CrossRefGoogle Scholar
  5. [5]
    Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(19):12123.CrossRefGoogle Scholar
  6. [6]
    Zhao LD, Hao S, Lo SH, Wu CI, Zhou X, Lee Y, Li H, Biswas K, Hogan TP, Uher C. High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J Am Chem Soc. 2013;135(19):7363.Google Scholar
  7. [7]
    Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373.CrossRefGoogle Scholar
  8. [8]
    Zhao LD, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2016;351(6269):141.CrossRefGoogle Scholar
  9. [9]
    Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109.CrossRefGoogle Scholar
  10. [10]
    Saha S. Exploring the origin of ultralow thermal conductivity in layered BiOCuSe. Phys Rev B. 2015;92(4):041202.CrossRefGoogle Scholar
  11. [11]
    Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis E, Kanatzidis MG. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 2004;303(5659):818.CrossRefGoogle Scholar
  12. [12]
    Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.CrossRefGoogle Scholar
  13. [13]
    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.CrossRefGoogle Scholar
  14. [14]
    Kanatzidis MG. Nanostructured thermoelectrics: the new paradigm? Chem Mater. 2009;22(3):648.CrossRefGoogle Scholar
  15. [15]
    Wu D, Zhao L-D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J-F, Zhu Y. Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ Sci. 2015;8(7):2056.CrossRefGoogle Scholar
  16. [16]
    Yamini SA, Mitchell DR, Gibbs ZM, Santos R, Patterson V, Li S, Pei YZ, Dou SX, Jeffrey Snyder G. Heterogeneous distribution of sodium for high thermoelectric performance of p-type multiphase lead-chalcogenides. Adv Energy Mater. 2015;5(21):1501047.CrossRefGoogle Scholar
  17. [17]
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.CrossRefGoogle Scholar
  18. [18]
    Lee Y, Lo SH, Androulakis J, Wu CI, Zhao LD, Chung DY, Hogan TP, Dravid VP, Kanatzidis MG. High-performance tellurium-free thermoelectrics: all-scale hierarchical structuring of p-type PbSe–MSe systems (M = Ca, Sr, Ba). J Am Chem Soc. 2013;135(13):5152.CrossRefGoogle Scholar
  19. [19]
    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci. 2012;5(1):5246.CrossRefGoogle Scholar
  20. [20]
    Wang H, Pei Y, LaLonde AD, Snyder GJ. Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc Natl Acad Sci. 2012;109(25):9705.CrossRefGoogle Scholar
  21. [21]
    Zhao LD, Lo SH, He J, Li H, Biswas K, Androulakis J, Wu CI, Hogan TP, Chung DY, Dravid VP. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J Am Chem Soc. 2011;133(50):20476.CrossRefGoogle Scholar
  22. [22]
    Wang H, Schechtel E, Pei Y, Snyder GJ. High Thermoelectric Efficiency of n-type PbS. Adv Energy Mater. 2013;3(4):488.CrossRefGoogle Scholar
  23. [23]
    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci. 2013;110(33):13261.CrossRefGoogle Scholar
  24. [24]
    Banik A, Shenoy US, Anand S, Waghmare UV, Biswas K. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem Mater. 2015;27(2):581.CrossRefGoogle Scholar
  25. [25]
    Tan G, Shi F, Doak JW, Sun H, Zhao LD, Wang P, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci. 2015;8(1):267.CrossRefGoogle Scholar
  26. [26]
    Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy Environ Sci. 2015;8(11):3298.CrossRefGoogle Scholar
  27. [27]
    Chen CL, Wang H, Chen YY, Day T, Snyder GJ. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A. 2014;2(29):11171.CrossRefGoogle Scholar
  28. [28]
    Sassi S, Candolfi C, Vaney J-B, Ohorodniichuk V, Masschelein P, Dauscher A, Lenoir B. Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl Phys Lett. 2014;104(21):212105.CrossRefGoogle Scholar
  29. [29]
    Tan Q, Zhao LD, Li JF, Wu CF, Wei TR, Xing ZB, Kanatzidis MG. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J Mater Chem A. 2014;2(41):17302.CrossRefGoogle Scholar
  30. [30]
    Kudman I. Thermoelectric properties of p-type PbTe–PbSe alloys. J Mater Sci. 1972;7(9):1027.CrossRefGoogle Scholar
  31. [31]
    Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type pbte, pbse, and pbte1–y se y. J Am Chem Soc. 2012;134(24):10031.CrossRefGoogle Scholar
  32. [32]
    Wang H, LaLonde AD, Pei Y, Snyder GJ. The criteria for beneficial disorder in thermoelectric solid solutions. Adv Func Mater. 2013;23(12):10031.CrossRefGoogle Scholar
  33. [33]
    Girard SN, He J, Zhou X, Shoemaker D, Jaworski CM, Uher C, Dravid VP, Heremans JP, Kanatzidis MG. High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc. 2011;133(41):16588.CrossRefGoogle Scholar
  34. [34]
    Jaworski CM, Nielsen MD, Wang H, Girard SN, Cai W, Porter WD, Kanatzidis MG, Heremans JP. Valence-band structure of highly efficient p-type thermoelectric PbTe-PbS alloys. Phys Rev B. 2013;87(4):045203.CrossRefGoogle Scholar
  35. [35]
    Wu H, Zhao LD, Zheng F, Wu D, Pei Y, Tong X, Kanatzidis MG, He J. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun. 2014;5:4515.Google Scholar
  36. [36]
    Androulakis J, Todorov I, He J, Chung D-Y, Dravid V, Kanatzidis M. Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe–PbS. J Am Chem Soc. 2011;133(28):10920.CrossRefGoogle Scholar
  37. [37]
    Wang H, Wang J, Cao X, Snyder GJ. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J Mater Chem A. 2014;2(9):3169.CrossRefGoogle Scholar
  38. [38]
    Wang J, Wang H, Snyder G, Zhang X, Ni Z, Chen Y. Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe–PbS solid solutions. J Phys D Appl Phys. 2013;46(40):405301.CrossRefGoogle Scholar
  39. [39]
    Zhang Q, Chere EK, Sun J, Cao F, Dahal K, Chen S, Chen G, Ren Z. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv Energy Mater. 2015;5(12):1500360.CrossRefGoogle Scholar
  40. [40]
    Wu CF, Wei TR, Li JF. Electrical and thermal transport properties of Pb1−xSnxSe solid solution thermoelectric materials. Phys Chem Chem Phys. 2015;17(19):13006.CrossRefGoogle Scholar
  41. [41]
    Androulakis J, Lin CH, Kong HJ, Uher C, Wu CI, Hogan T, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG. Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1−xSnxTe−PbS. J Am Chem Soc. 2007;129(31):9780.CrossRefGoogle Scholar
  42. [42]
    Korkosz RJ, Chasapis TC, Lo SH, Doak JW, Kim YJ, Wu CI, Hatzikraniotis E, Hogan TP, Seidman DN, Wolverton C. High ZT in p-Type (PbTe)1−2x(PbSe)x(PbS)x thermoelectric materials. J Am Chem Soc. 2014;136(8):3225.CrossRefGoogle Scholar
  43. [43]
    Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li JF, He J. Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in PbTe system. Adv Energy Mater. 2017;7(3):1601450.CrossRefGoogle Scholar
  44. [44]
    Pijpers J, Ulbricht R, Tielrooij K, Osherov A, Golan Y, Delerue C, Allan G, Bonn M. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nat Phys. 2009;5(11):811.CrossRefGoogle Scholar
  45. [45]
    Božin ES, Malliakas CD, Souvatzis P, Proffen T, Spaldin NA, Kanatzidis MG, Billinge SJ. Entropically stabilized local dipole formation in lead chalcogenides. Science. 2010;330(6011):1660.CrossRefGoogle Scholar
  46. [46]
    Littlewood P. The crystal structure of IV–VI compounds. I. Classification and description. J Phys C: Solid State Phys. 1980;13(26):4855.CrossRefGoogle Scholar
  47. [47]
    Brebrick R. Deviations from stoichiometry and electrical properties in SnTe. J Phys Chem Solids. 1963;24(1):27.CrossRefGoogle Scholar
  48. [48]
    Wang H, Pei Y, LaLonde AD, Snyder GJ. Heavily doped p-Type PbSe with high thermoelectric performance: an alternative for PbTe. Adv Mater. 2011;23(11):1366.CrossRefGoogle Scholar
  49. [49]
    Chasapis TC, Lee Y, Hatzikraniotis E, Paraskevopoulos KM, Chi H, Uher C, Kanatzidis MG. Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. Phys Rev B. 2015;91(8):085207.CrossRefGoogle Scholar
  50. [50]
    Fistul VI. Heavily Doped Semiconductors. Berlin, Heidelberg: Springer; 2012. 1.Google Scholar
  51. [51]
    Lefebvre I, Szymanski M, Olivier-Fourcade J, Jumas J. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys Rev B. 1998;58(4):1896.CrossRefGoogle Scholar
  52. [52]
    Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem. 2011;21(40):15843.CrossRefGoogle Scholar
  53. [53]
    Fan Z, Wang H, Wu Y, Liu X, Lu Z. Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Adv. 2016;6(57):52164.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations