Skip to main content
Log in

Thermoelectric transport properties of Pb–Sn–Te–Se system

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

IV–VI compounds are considered as promising thermoelectric materials, and high thermoelectric performance was achieved in IV–VI solid solutions. In this work, the thermoelectric properties of Pb–Sn–Te–Se-based solid solutions were systematically investigated. Among these solid solutions, it is found that a figure of merit (ZT) peak value of 1.0 at 873 K can be obtained in (PbTe)0.5(SnTe)0.5, on account of the combination of superior electrical properties in SnTe and low thermal conductivity in PbTe. Furthermore, we investigated and summarized the thermoelectric transport properties and proposed the thermoelectric performance maps for the IV–VI solid solutions in Pb–Sn–Te–Se system. This comprehensive investigation on Pb–Sn–Te–Se-based solid solutions can effectively guide and scan thermoelectric performance for a given unknown composition and enhance the thermoelectric properties in IV–VI compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang X, Zhao LD. Thermoelectric materials: energy conversion between heat and electricity. J Materiomics. 2015;1(2):92.

    Article  Google Scholar 

  2. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  Google Scholar 

  3. Goldsmid HJ. Introduction to Thermoelectricity. Berlin: Springer; 2010. 1.

    Google Scholar 

  4. Zhao LD, Dravid VP, Kanatzidis MG. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci. 2014;7(1):251.

    Article  Google Scholar 

  5. Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(19):12123.

    Article  Google Scholar 

  6. Zhao LD, Hao S, Lo SH, Wu CI, Zhou X, Lee Y, Li H, Biswas K, Hogan TP, Uher C. High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J Am Chem Soc. 2013;135(19):7363.

    Google Scholar 

  7. Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373.

    Article  Google Scholar 

  8. Zhao LD, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2016;351(6269):141.

    Article  Google Scholar 

  9. Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109.

    Article  Google Scholar 

  10. Saha S. Exploring the origin of ultralow thermal conductivity in layered BiOCuSe. Phys Rev B. 2015;92(4):041202.

    Article  Google Scholar 

  11. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis E, Kanatzidis MG. Cubic AgPb m SbTe2+m : bulk thermoelectric materials with high figure of merit. Science. 2004;303(5659):818.

    Article  Google Scholar 

  12. Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.

    Article  Google Scholar 

  13. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

    Article  Google Scholar 

  14. Kanatzidis MG. Nanostructured thermoelectrics: the new paradigm? Chem Mater. 2009;22(3):648.

    Article  Google Scholar 

  15. Wu D, Zhao L-D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J-F, Zhu Y. Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ Sci. 2015;8(7):2056.

    Article  Google Scholar 

  16. Yamini SA, Mitchell DR, Gibbs ZM, Santos R, Patterson V, Li S, Pei YZ, Dou SX, Jeffrey Snyder G. Heterogeneous distribution of sodium for high thermoelectric performance of p-type multiphase lead-chalcogenides. Adv Energy Mater. 2015;5(21):1501047.

    Article  Google Scholar 

  17. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.

    Article  Google Scholar 

  18. Lee Y, Lo SH, Androulakis J, Wu CI, Zhao LD, Chung DY, Hogan TP, Dravid VP, Kanatzidis MG. High-performance tellurium-free thermoelectrics: all-scale hierarchical structuring of p-type PbSe–MSe systems (M = Ca, Sr, Ba). J Am Chem Soc. 2013;135(13):5152.

    Article  Google Scholar 

  19. Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci. 2012;5(1):5246.

    Article  Google Scholar 

  20. Wang H, Pei Y, LaLonde AD, Snyder GJ. Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc Natl Acad Sci. 2012;109(25):9705.

    Article  Google Scholar 

  21. Zhao LD, Lo SH, He J, Li H, Biswas K, Androulakis J, Wu CI, Hogan TP, Chung DY, Dravid VP. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J Am Chem Soc. 2011;133(50):20476.

    Article  Google Scholar 

  22. Wang H, Schechtel E, Pei Y, Snyder GJ. High Thermoelectric Efficiency of n-type PbS. Adv Energy Mater. 2013;3(4):488.

    Article  Google Scholar 

  23. Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci. 2013;110(33):13261.

    Article  Google Scholar 

  24. Banik A, Shenoy US, Anand S, Waghmare UV, Biswas K. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem Mater. 2015;27(2):581.

    Article  Google Scholar 

  25. Tan G, Shi F, Doak JW, Sun H, Zhao LD, Wang P, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci. 2015;8(1):267.

    Article  Google Scholar 

  26. Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy Environ Sci. 2015;8(11):3298.

    Article  Google Scholar 

  27. Chen CL, Wang H, Chen YY, Day T, Snyder GJ. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A. 2014;2(29):11171.

    Article  Google Scholar 

  28. Sassi S, Candolfi C, Vaney J-B, Ohorodniichuk V, Masschelein P, Dauscher A, Lenoir B. Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl Phys Lett. 2014;104(21):212105.

    Article  Google Scholar 

  29. Tan Q, Zhao LD, Li JF, Wu CF, Wei TR, Xing ZB, Kanatzidis MG. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J Mater Chem A. 2014;2(41):17302.

    Article  Google Scholar 

  30. Kudman I. Thermoelectric properties of p-type PbTe–PbSe alloys. J Mater Sci. 1972;7(9):1027.

    Article  Google Scholar 

  31. Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type pbte, pbse, and pbte1–y se y. J Am Chem Soc. 2012;134(24):10031.

    Article  Google Scholar 

  32. Wang H, LaLonde AD, Pei Y, Snyder GJ. The criteria for beneficial disorder in thermoelectric solid solutions. Adv Func Mater. 2013;23(12):10031.

    Article  Google Scholar 

  33. Girard SN, He J, Zhou X, Shoemaker D, Jaworski CM, Uher C, Dravid VP, Heremans JP, Kanatzidis MG. High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc. 2011;133(41):16588.

    Article  Google Scholar 

  34. Jaworski CM, Nielsen MD, Wang H, Girard SN, Cai W, Porter WD, Kanatzidis MG, Heremans JP. Valence-band structure of highly efficient p-type thermoelectric PbTe-PbS alloys. Phys Rev B. 2013;87(4):045203.

    Article  Google Scholar 

  35. Wu H, Zhao LD, Zheng F, Wu D, Pei Y, Tong X, Kanatzidis MG, He J. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun. 2014;5:4515.

    Google Scholar 

  36. Androulakis J, Todorov I, He J, Chung D-Y, Dravid V, Kanatzidis M. Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe–PbS. J Am Chem Soc. 2011;133(28):10920.

    Article  Google Scholar 

  37. Wang H, Wang J, Cao X, Snyder GJ. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J Mater Chem A. 2014;2(9):3169.

    Article  Google Scholar 

  38. Wang J, Wang H, Snyder G, Zhang X, Ni Z, Chen Y. Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe–PbS solid solutions. J Phys D Appl Phys. 2013;46(40):405301.

    Article  Google Scholar 

  39. Zhang Q, Chere EK, Sun J, Cao F, Dahal K, Chen S, Chen G, Ren Z. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv Energy Mater. 2015;5(12):1500360.

    Article  Google Scholar 

  40. Wu CF, Wei TR, Li JF. Electrical and thermal transport properties of Pb1−x Sn x Se solid solution thermoelectric materials. Phys Chem Chem Phys. 2015;17(19):13006.

    Article  Google Scholar 

  41. Androulakis J, Lin CH, Kong HJ, Uher C, Wu CI, Hogan T, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG. Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1−x Sn x Te−PbS. J Am Chem Soc. 2007;129(31):9780.

    Article  Google Scholar 

  42. Korkosz RJ, Chasapis TC, Lo SH, Doak JW, Kim YJ, Wu CI, Hatzikraniotis E, Hogan TP, Seidman DN, Wolverton C. High ZT in p-Type (PbTe)1−2x (PbSe) x (PbS) x thermoelectric materials. J Am Chem Soc. 2014;136(8):3225.

    Article  Google Scholar 

  43. Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li JF, He J. Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in PbTe system. Adv Energy Mater. 2017;7(3):1601450.

    Article  Google Scholar 

  44. Pijpers J, Ulbricht R, Tielrooij K, Osherov A, Golan Y, Delerue C, Allan G, Bonn M. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nat Phys. 2009;5(11):811.

    Article  Google Scholar 

  45. Božin ES, Malliakas CD, Souvatzis P, Proffen T, Spaldin NA, Kanatzidis MG, Billinge SJ. Entropically stabilized local dipole formation in lead chalcogenides. Science. 2010;330(6011):1660.

    Article  Google Scholar 

  46. Littlewood P. The crystal structure of IV–VI compounds. I. Classification and description. J Phys C: Solid State Phys. 1980;13(26):4855.

    Article  Google Scholar 

  47. Brebrick R. Deviations from stoichiometry and electrical properties in SnTe. J Phys Chem Solids. 1963;24(1):27.

    Article  Google Scholar 

  48. Wang H, Pei Y, LaLonde AD, Snyder GJ. Heavily doped p-Type PbSe with high thermoelectric performance: an alternative for PbTe. Adv Mater. 2011;23(11):1366.

    Article  Google Scholar 

  49. Chasapis TC, Lee Y, Hatzikraniotis E, Paraskevopoulos KM, Chi H, Uher C, Kanatzidis MG. Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. Phys Rev B. 2015;91(8):085207.

    Article  Google Scholar 

  50. Fistul VI. Heavily Doped Semiconductors. Berlin, Heidelberg: Springer; 2012. 1.

    Google Scholar 

  51. Lefebvre I, Szymanski M, Olivier-Fourcade J, Jumas J. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys Rev B. 1998;58(4):1896.

    Article  Google Scholar 

  52. Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem. 2011;21(40):15843.

    Article  Google Scholar 

  53. Fan Z, Wang H, Wu Y, Liu X, Lu Z. Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Adv. 2016;6(57):52164.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51671015, 51571007 and 51772012), the 111 project (No. B17002), the Beijing Municipal Science and Technology Commission (No. Z171100002017002) and the Shenzhen Peacock Plan Team (No. KQTD2016022619565991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Dong Zhao.

Ethics declarations

Ethical standards

On behalf of all the authors, we declare that all the experiments comply with the current laws of the country in which they were performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, BC., Xiao, Y., Zhou, YM. et al. Thermoelectric transport properties of Pb–Sn–Te–Se system. Rare Met. 37, 343–350 (2018). https://doi.org/10.1007/s12598-017-0991-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0991-9

Keywords

Navigation