Rare Metals

pp 1–6 | Cite as

Improving interfacial and electrical properties of HfO2/SiO2/p-Si stacks with N2-plasma-treated SiO2 interfacial layer

  • Xiao-Qiang Chen
  • Yu-Hua Xiong
  • Jun Du
  • Feng Wei
  • Hong-Bin Zhao
  • Qing-Zhu Zhang
  • Wen-Qiang Zhang
  • Xiao-Ping Liang
Article

Abstract

The effect of N2-plasma-treated SiO2 interfacial layer on the interfacial and electrical characteristics of HfO2/SiO2/p-Si stacks grown by atomic layer deposition (ALD) was investigated. The microstructure and interfacial chemical bonding configuration of the HfO2/SiO2/Si stacks were also examined by high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Compared with the samples without N2-plasma treatment, it is found that the samples with N2-plasma treatment have less oxygen vacancy density for SiO2 interfacial layer and better HfO2/SiO2 interface. In agreement with XPS analyses, electrical measurements of the samples with N2-plasma treatment show better interfacial quality, including lower interface-state density (D it, 9.3 × 1011 cm−2·eV−1 near midgap) and lower oxide-charge density (Q ox, 2.5 × 1012 cm−2), than those of the samples without N2-plasma treatment. Additionally, the samples with N2-plasma treatment have better electrical performances, including higher saturation capacitance density (1.49 μF·cm−2) and lower leakage current density (3.2 × 10−6 A·cm−2 at V g = V fb − 1 V). Furthermore, constant voltage stress was applied on the gate electrode to investigate the reliability of these samples. It shows that the samples with N2-plasma treatment have better electrical stability than the samples without N2-plasma treatment.

Keywords

Metal–oxide–semiconductor High-k Atomic layer deposited N2-plasma treatment Interfacial characteristic Reliability 

Notes

Acknowledgements

This study was financially supported by the National Science and Technology Major Project of China (No. 2013ZX02303-001-002).

References

  1. [1]
    Triyoso DH, Hegde RI, Gregory R, Spencer G, Schaeffer JK, Raymond M. Factors impacting stabilization of tetragonal phase in HfxZr1-xO2 high-k dielectrics. In: Proceedings of the 2009 IEEE International Conference on IC Design and Technology; 2009. 89.Google Scholar
  2. [2]
    Robertson J, Wallace RM. High-K materials and metal gates for CMOS applications. Mater Sci Eng R-Rep. 2015;88:1.CrossRefGoogle Scholar
  3. [3]
    Robertson J. High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys. 2006;69(2):327.CrossRefGoogle Scholar
  4. [4]
    Liu X, Ramanathan S, Longdergan A, Srivastava A, Lee E, Seidel TE, Barton JT, Pang D, Gordon RG. ALD of hafnium oxide thin films from Tetrakis(ethylmethylamino)hafnium and ozone. J Electrochem Soc. 2005;152(3):G213.CrossRefGoogle Scholar
  5. [5]
    Zhang JW, He G, Chen HS, Lv JG, Gao J, Ma R, Liu M, Sun ZQ. Comparison of microstructure and electrical characteristics of sputtering-derived HfGdO/HfTiO and HfTiO/HfGdO gate stacks. Ceram Int. 2015;41(8):10216.CrossRefGoogle Scholar
  6. [6]
    Sarkar PK, Roy A. Electrical properties of radio-frequency sputtered HfO2 thin films for advanced CMOS technology. AIP Conference Proceedings. 2015;1675(1):030066.CrossRefGoogle Scholar
  7. [7]
    Kim SH, Seok TJ, Jin HS, Kim WB, Park TJ. Electrical and physicochemical properties of atomic-layer-deposited HfO2 film on Si substrate with interfacial layer grown by nitric acid oxidation. Appl Surf Sci. 2016;365:376.CrossRefGoogle Scholar
  8. [8]
    Park J, Park TJ, Cho M, Kim SK, Hong SH, Kim JH, Seo M, Hwang CS, Won JY, Jeong R, Choi JH. Influence of the oxygen concentration of atomic-layer-deposited HfO2 gate dielectric films on the electron mobility of polycrystalline-Si gate transistors. J Appl Phys. 2006;99(9):094501.CrossRefGoogle Scholar
  9. [9]
    Taube A, Mroczyński R, Korwin-Mikke K, Gierałtowska S, Szmidt J, Piotrowska A. Effect of the post-deposition annealing on electrical characteristics of MIS structures with HfO2/SiO2 gate dielectric stacks. Mater Sci Eng B. 2012;177(15):1281.CrossRefGoogle Scholar
  10. [10]
    Hiratani M, S-i Saito, Shimamoto Y, Torii K. Effective electron mobility reduced by remote charge scattering in high-κ gate stacks. Jpn J Appl Phys. 2002;41(Part 1, No. 7A):4521.CrossRefGoogle Scholar
  11. [11]
    Tinoco JC, Estrada M, Iñiguez B, Cerdeira A. Conduction mechanisms of silicon oxide/titanium oxide MOS stack structures. Microelectron Reliab. 2008;48(3):370.CrossRefGoogle Scholar
  12. [12]
    Pradhan SK, Tanyi EK, Skuza JR, Xiao B, Pradhan AK. Electrical behavior of atomic layer deposited high quality SiO2 gate dielectric. J Vac Sci Technol A Vac Surf Films. 2015;33(1):107.CrossRefGoogle Scholar
  13. [13]
    Arimura H, Kitano N, Naitou Y, Oku Y, Minami T, Kosuda M, Hosoi T, Shimura T, Watanabe H. Excellent electrical properties of TiO2/HfSiO/SiO2 layered higher-k gate dielectrics with sub-1 nm equivalent oxide thickness. Appl Phys Lett. 2008;92(21):212902.CrossRefGoogle Scholar
  14. [14]
    Luc QH, Do HB, Ha MTH, Hu CC, Lin YC, Chang EY. Plasma enhanced atomic layer deposition passivated HfO2/AlN/In0.53Ga0.47As MOSCAPs with sub-nanometer equivalent oxide thickness and low interface trap density. IEEE Electron Device Lett. 2015;36(12):1277.CrossRefGoogle Scholar
  15. [15]
    Lu HH, Xu JP, Liu L, Wang LS, Lai PT, Tang WM. Improved interfacial quality of GaAs metal-oxide-semiconductor device with NH3-plasma treated yittrium-oxynitride as interfacial passivation layer. Microelectron Reliab. 2016;56:17.CrossRefGoogle Scholar
  16. [16]
    Liu CW, Xu JP, Liu L, Lu HH. High-k gate dielectric GaAs MOS device with LaON as interlayer and NH3-plasma surface pretreatment. Chin Phys B. 2015;24(12):127304.CrossRefGoogle Scholar
  17. [17]
    Ramani K, Singh RK, Craciun V. Hf–O–N and HfO + barrier layers for Hf–Ti–O gate dielectric thin films. Microelectron Eng. 2008;85(8):1758.CrossRefGoogle Scholar
  18. [18]
    Chen JH, Yoo WJ, Chan DSH. Effects of N2, O2, and Ar plasma treatments on the removal of crystallized HfO2 film. J Vac Sci Technol A. 2006;24(1):133.CrossRefGoogle Scholar
  19. [19]
    Zimmermann C, Bethge O, Winkler K, Lutzer B, Bertagnolli E. Improving the ALD-grown Y2O3/Ge interface quality by surface and annealing treatments. Appl Surf Sci. 2016;369:377.CrossRefGoogle Scholar
  20. [20]
    Ma R, Liu M, He G, Fang M, Shang G, Fei G, Zhang L. Nitrogen-concentration modulated interfacial and electrical properties of sputtering-derived HfGdON gate dielectric. J Appl Phys. 2016;119(21):214103.CrossRefGoogle Scholar
  21. [21]
    Matsuki T, Hettiarachchi R, Feng W, Shiraishi K, Yamada K, Ohmori K. Impact of nitrogen incorporation on low-frequency noise of polycrystalline silicon/TiN/HfO5/SiO2. Gate-stack metal-oxide-semiconductor field-effect transistors. Jpn J Appl Phys. 2011;50(10):10PB02.CrossRefGoogle Scholar
  22. [22]
    Wu Y, Lucovsky G, Lee YM. The performance and reliability of PMOSFET’s with ultrathin silicon nitride/oxide stacked gate dielectrics with nitrided Si-SiO2 interfaces prepared by remote plasma enhanced CVD and post-deposition rapid thermal annealing. IEEE Trans Electron Devices. 2000;47(7):1361.CrossRefGoogle Scholar
  23. [23]
    Lin C, Leou KC, Fan YC, Li TC, Chang KH, Lee LS, Tzeng PJ. Effects of in situ N2 plasma treatment on etch of HfO2 in inductively coupled Cl2/N2 plasmas. J Vac Sci Technol A Vac Surf Films. 2007;25(3):592.CrossRefGoogle Scholar
  24. [24]
    Chou CH, Chang HH, Hsu CC, Yeh WK, Chien CH. Low-leakage tetragonal ZrO2 (EOT < 1 nm) with in situ plasma interfacial passivation on germanium. IEEE Electron Device Lett. 2016;37(2):138.CrossRefGoogle Scholar
  25. [25]
    Ye C, Zhan C, Zhang J, Wang H, Deng T, Tang S. Influence of rapid thermal annealing temperature on structure and electrical properties of high permittivity HfTiO thin film used in MOSFET. Microelectron Reliab. 2014;54(2):388.CrossRefGoogle Scholar
  26. [26]
    Hauser JR, Ahmed K. Characterization of Ultra-Thin Oxides Using Electrical C-V and I-V Measurements. AIP Conference Proceedings. 1998;449(1):235.Google Scholar
  27. [27]
    Terman LM. An investigation of surface states at a silicon silicon oxide interface employing matal oxide silicon diode. Solid-State Electron. 1962;5:285.CrossRefGoogle Scholar
  28. [28]
    Han JH, Zhang R, Osada T, Hata M, Takenaka M, Takagi S. Impact of plasma post-nitridation on HfO2/Al2O3/SiGe gate stacks toward EOT scaling. Microelectron Eng. 2013;109:266.CrossRefGoogle Scholar
  29. [29]
    Lin LM, Lai PT. High-k gate stack HfxTi1−xON/SiO2 for SiC MOS devices. J Mater Sci Mater Electron. 2008;19(8–9):894.CrossRefGoogle Scholar
  30. [30]
    Gao J, He G, Sun ZQ, Chen HS, Zheng CY, Jin P, Xiao DQ, Liu M. Modification of electrical properties and carrier transportation mechanism of ALD-derived HfO2/Si gate stacks by Al2O3 incorporation. J Alloys Compd. 2016;667:352.CrossRefGoogle Scholar
  31. [31]
    Seong NJ, Lee WJ, Yoon SG. Structural and electrical characterizations of ultrathin HfO2 gate dielectrics treated by nitrogen-plasma atmosphere. J Vac Sci Technol B Microelectron Nanometer Struct. 2006;24(1):312.CrossRefGoogle Scholar
  32. [32]
    Li CX, Lai PT. Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric. Appl Phys Lett. 2009;95(2):022910.CrossRefGoogle Scholar
  33. [33]
    Xiao SZ, Feng F, Shi K, Deng ST, Qu TM, Zhu YP, Lu HY, Huang RX, Han ZH. Resputtering effect during MgO buffer layer deposition by magnetron sputtering for superconducting coated conductors. J Vac Sci Technol A. 2015;33(4):041504.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Advanced Electronic Materials InstituteGeneral Research Institute for Nonferrous MetalsBeijingChina
  2. 2.State Key Laboratory of Advanced Materials for Smart SensingGeneral Research Institute for Nonferrous MetalsBeijingChina
  3. 3.Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations