Skip to main content
Log in

Controlled pore size of Pt/KIT-6 used for propane total oxidation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Mesoporous silica KIT-6 with different pore sizes was controllably synthesized by hydrothermal methods. The same contents of Pt were loaded on KIT-6 supports to apply for propane total oxidation. Low-angle X-ray diffraction (XRD), nitrogen adsorption–desorption, CO chemisorption and transmission electron microscopy (TEM) were carried out to investigate the physicochemical properties of the catalysts. The results reveal that different pore sizes of KIT-6 supports could affect the Pt particle sizes on KIT-6. The mesopores on KIT-6-80 and KIT-6-130 effectively confine the size of the inside Pt nanoparticles during calcining. Pt/KIT-6-80 with the appropriate pore size as well as the Pt particle size exhibits the best catalytic performance with T 50 (the temperature at which hydrocarbon (HC) conversion reaches 50%) of only 237 °C. However, Pt particles prefer dispersing on the external surface of KIT-6-40 due to those too small pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cui Y, Peng H, Deng K, Shi L. The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts. Energy. 2014;64:323.

    Article  Google Scholar 

  2. Theis JR, Lambert CK. An assessment of low temperature NO x adsorbers for cold-start NO x control on diesel engines. Catal Today. 2015;258(S2):367.

    Article  Google Scholar 

  3. Benard S, Ousmane M, Retailleau L, Boreave A, Vernoux P, Giroir-Fendler A. Treatment of air polluted with methanol vapours in biofilters with and without percolation. Can J Civ Eng. 2009;36(12):1935.

    Article  Google Scholar 

  4. Haneda M, Sasaki M, Hamada H, Ozawa M. In situ FT-IR study of diesel hydrocarbon oxidation over Pt/Al2O3 catalyst. Catal Lett. 2011;141(9):1262.

    Article  Google Scholar 

  5. Haneda M, Sasaki M, Hamada H, Ozawa M. Effect of Pt dispersion on the catalytic activity of supported Pt catalysts for diesel hydrocarbon oxidation. Top Catal. 2013;56(1–8):249.

    Article  Google Scholar 

  6. Galisteo FC, Mariscal R, Granados ML, Fierro J, Daley R, Anderson J. Reactivation of sintered Pt/Al2O3 oxidation catalysts. Appl Catal B. 2005;59(3):227.

    Article  Google Scholar 

  7. Yoshida H, Yazawa Y, Hattori T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion. Catal Today. 2003;87(1–4):19.

    Article  Google Scholar 

  8. Cao Y, Ran R, Chen Y, Wu X, Weng D. Nanostructured platinum in ordered mesoporous silica as novel efficient catalyst for propane total oxidation. RSC Adv. 2016;6(36):30170.

    Article  Google Scholar 

  9. Avila M, Vignatti C, Apesteguía C, Garetto T. Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts. Chem Eng J. 2014;241:52.

    Article  Google Scholar 

  10. Iwamoto M, Yahiro H, Shin HK, Watanabe M, Guo J, Konno M, Chikahisa T, Murayama T. Performance and durability of zeolite catalyst for selective reduction of nitrogen monoxide in actual diesel-engine exhaust. Appl Catal B. 1994;5(1):L1–16.

    Article  Google Scholar 

  11. Matsubayashi N, Yasuda H, Imamura M, Yoshimura Y. Catalyst design and development for upgrading aromatic hydrocarbons. Catal Today. 1998;45(1–4):375.

    Article  Google Scholar 

  12. Lee S-W, Ihm S-K. Hydroisomerization and hydrocracking over platinum loaded ZSM-23 catalysts in the presence of sulfur and nitrogen compounds for the dewaxing of diesel fuel. Fuel. 2014;134:237.

    Article  Google Scholar 

  13. Garetto T, Rincón E, Apesteguia C. The origin of the enhanced activity of Pt/zeolites for combustion of C-2–C-4 alkanes. Appl Catal B. 2007;73(1):65.

    Article  Google Scholar 

  14. Boulaoued A, Fechete I, Donnio B, Bernard M, Turek P, Garin F. Mo/KIT-6, Fe/KIT-6 and Mo-Fe/KIT-6 as new types of heterogeneous catalysts for the conversion of MCP. Microporous Mesoporous Mater. 2012;155:131.

    Article  Google Scholar 

  15. Liu H, Wang H, Shen J, Sun Y, Liu Z. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing CO x -free hydrogen from ammonia. Appl Catal A. 2008;337(2):138.

    Article  Google Scholar 

  16. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal Today. 1998;44(1):327.

    Article  Google Scholar 

  17. Soni K, Rana BS, Sinha AK, Bhaumik A, Nandi M, Kumar M, Dhar GM. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl Catal B. 2009;90(1–2):55.

    Article  Google Scholar 

  18. Kleitz F, Hei Choi S, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun. 2003;17:2136.

    Article  Google Scholar 

  19. Cao Y, Ran R, Wu X, Weng D. A new insight into the effects of barium addition on Pd-only catalysts: Pd-support interface and CO + NO reaction pathway. Appl Catal A. 2015;501:17.

    Article  Google Scholar 

  20. Bowker M, Stone P, Morrall P, Smith R, Bennett R, Perkins N, Kvon R, Pang C, Fourre E, Hall M. Model catalyst studies of the strong metal-support interaction: surface structure identified by STM on Pd nanoparticles on TiO2(110). J Catal. 2005;234(1):172–81.

    Article  Google Scholar 

  21. Patel A, Shukla P, Rufford T, Wang S, Chen J, Rudolph V, Zhu Z. Catalytic reduction of NO by CO over copper-oxide supported mesoporous silica. Appl Catal A. 2011;409:55.

    Article  Google Scholar 

  22. Zhang D, Duan A, Zhao Z, Xu C. Synthesis, characterization, and catalytic performance of NiMo catalysts supported on hierarchically porous Beta-KIT-6 material in the hydrodesulfurization of dibenzothiophene. J Catal. 2010;274(2):273.

    Article  Google Scholar 

  23. Sing KS, Evrett DH, Haul RAW, Moscou L, Pierotti RA, Rouqerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):603.

    Article  Google Scholar 

  24. Rafti M, Brunsen A, Fuertes MC, Azzaroni O, Soler-Illia GJ. Heterogeneous catalytic activity of platinum nanoparticles hosted in mesoporous silica thin films modified with polyelectrolyte brushes. ACS Appl Mater Interfaces. 2013;5(18):8833.

    Article  Google Scholar 

  25. Huang S, Hara K, Fukuoka A. Green catalysis for selective CO oxidation in hydrogen for fuel cell. Energy Environ Sci. 2009;2(10):1060.

    Article  Google Scholar 

  26. Díaz U, Brunel D, Corma A. Catalysis using multifunctional organosiliceous hybrid materials. Chem Soc Rev. 2013;42(9):4083.

    Article  Google Scholar 

  27. Garetto T, Rincón E, Apesteguıa C. Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Appl Catal B. 2004;48(3):167.

    Article  Google Scholar 

  28. Park JE, Kim KB, Kim Y-A, Song KS, Park ED. Effect of Pt particle size on propane combustion over Pt/ZSM-5. Catal Lett. 2013;143(11):1132.

    Article  Google Scholar 

  29. Beck IE, Bukhtiyarov VI, Pakharukov IY, Zaikovsky VI, Kriventsov VV, Parmon VN. Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation. J Catal. 2009;268(1):60.

    Article  Google Scholar 

  30. Otto K, Andino JM, Parks C. The influence of platinum concentration and particle size on the kinetics of propane oxidation over Pt/γ-alumina. J Catal. 1991;131(1):243.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0205000) and the Ministry of Science and Technology of China (No. 2015AA034603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YS., Cao, YD., Ran, R. et al. Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Met. 37, 123–128 (2018). https://doi.org/10.1007/s12598-017-0937-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0937-2

Keywords

Navigation