Low-temperature molten salt synthesis and luminescence properties of Eu(III)-based coordination polymer nanosheets

Abstract

In this work, Eu(III)-based coordination polymer (EuCP) nanosheets were successfully synthesized using tetrabutylammonium bromide (TBAB) as low-temperature molten salt (LMS), terephthalic acid (PTA) and pyromellitic acid (PMA) as organic building blocks at 160 °C. X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetry and differential thermal analysis (TG–DTA) were used to characterize the obtained products. Results show that the nanosheets have an average size of 200 nm and a thickness of about 50 nm. The effect of reaction temperature, reaction time and molar ratio of Eu3+/PTA/PMA on the preparation was investigated. It turns out that all of them have great effect on morphology and size of the final product. When excited with 315 nm, strong emission centering at 617 nm is realized. Importantly, this synthetic methodology may offer a new alternative in the preparation of rare earth nanomaterials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    Bunzli JCG. Review: lanthanide coordination chemistry: from old concepts to coordination polymers. J Coord Chem. 2014;67(23–24):3706.

    CAS  Article  Google Scholar 

  2. [2]

    Bünzli J-CG. Lanthanide luminescence for biomedical analyses and imaging. Chem Rev. 2010;110(5):2729.

    Article  Google Scholar 

  3. [3]

    Bernot K, Bogani L, Caneschi A, Gatteschi D, Sessoli R. A family of rare-earth-based single chain magnets: playing with anisotropy. J Am Chem Soc. 2006;128(24):7947.

    CAS  Article  Google Scholar 

  4. [4]

    Decadt R, Van Hecke K, Depla D, Leus K, Weinberger D, Van Driessche I, Van Der Voort P, Van Deun R. Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg Chem. 2012;51(21):11623.

    CAS  Article  Google Scholar 

  5. [5]

    Li ZH, Xue LP, Shan LL, Zhao BT, Kan J, Su WP. Hydrogen bonded-extended lanthanide coordination polymers decorated with 2,3-thiophenedicarboxylate and oxalate: synthesis, structures, and properties. Cryst Eng Comm. 2014;16(47):10824.

    CAS  Article  Google Scholar 

  6. [6]

    Masoomi MY, Morsali A. Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord Chem Rev. 2012;256(23–24):2921.

    CAS  Article  Google Scholar 

  7. [7]

    Demars T, Boltoeva M, Vigier N, Maynadié J, Ravaux J, Genre C, Meyer D. From coordination polymers to doped rare-earth oxides. Eur J Inorg Chem. 2012;2012(24):3875.

    CAS  Article  Google Scholar 

  8. [8]

    Li CC, Zeng HC. Coordination chemistry and antisolvent strategy to rare-earth solid solution colloidal spheres. J Am Chem Soc. 2012;134(46):19084.

    CAS  Article  Google Scholar 

  9. [9]

    Zhao YX, Nie ZW, Shi MM, Zeng CH, Li Y, Wang L, Zhong SL. Cerium-based porous coordination polymers with hierarchical superstructures: fabrication, formation mechanism and their thermal conversion to hierarchical CeO2. Inorg Chem Front. 2015;2(6):567.

    CAS  Article  Google Scholar 

  10. [10]

    Shi MM, Zeng CH, Wang L, Nie ZW, Zhao YX, Zhong SL. Straw-sheaf-like terbium-based coordination polymer architectures: microwave-assisted synthesis and their application as selective luminescent probes for heavy metal ions. New J Chem. 2015;39(4):2973.

    CAS  Article  Google Scholar 

  11. [11]

    Zhong SL, Wang MY, Wang L, Li Y, Noh HM, Jeong JH. Preparation of 3D cerium-based coordination polymer microstructures and their conversion to ceria. Cryst Eng Comm. 2014;16(2):231.

    CAS  Article  Google Scholar 

  12. [12]

    Zhao D, Wang L, Li Y, Zhang LF, Lv YH, Zhong SL. Uniform europium-based infinite coordination polymer submicrospheres: fast microwave synthesis and characterization. Inorg Chem Commun. 2012;20:97.

    CAS  Article  Google Scholar 

  13. [13]

    Zhong SL, Jing HY, Li Y, Yin SG, Zeng CH, Wang L. Coordination polymer submicrospheres: fast microwave synthesis and their conversion under different atmospheres. Inorg Chem. 2014;53(16):8278.

    CAS  Article  Google Scholar 

  14. [14]

    Zhong SL, Ji YH, Xie QJ, Wang L, Li Y, Jeong JH. Coordination polymer nanospheres: preparation, upconversion properties and cytotoxicity study. Mater Lett. 2013;102–103:19.

    Article  Google Scholar 

  15. [15]

    Zhong SL, Bai LJ, Zhao D, Wang L, Li Y, Ding L. Europium (III) coordination polymers micro/nanostructures: a ligand structure effect. Mater Lett. 2013;96:125.

    CAS  Article  Google Scholar 

  16. [16]

    Zhong SL, Xu R, Zhang LF, Qu WG, Gao GQ, Wu XL, Xu AW. Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. J Mater Chem. 2011;21(41):16574.

    CAS  Article  Google Scholar 

  17. [17]

    Luo LF, Xu R, Zhao D, Zhong SL. One-dimensional (1D) europium coordination polymer wires: synthesis, characterization and photoluminescence properties. J Rare Earths. 2010;28:106.

    CAS  Article  Google Scholar 

  18. [18]

    Xu MS, Liang T, Shi MM, Chen HZ. Graphene-like two-dimensional materials. Chem Rev. 2013;113(5):3766.

    CAS  Article  Google Scholar 

  19. [19]

    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science. 2013;340(6139):1420.

    CAS  Article  Google Scholar 

  20. [20]

    Tan CL, Zhang H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun. 2015;6:7873.

    CAS  Article  Google Scholar 

  21. [21]

    Niu J, Wang D, Qin HL, Xiong X, Tan PL, Li YY, Liu R, Lu XX, Wu J, Zhang T, Ni WH, Jin J. Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nat Commun. 2014;5:3313.

    Article  Google Scholar 

  22. [22]

    Qian JC, Chen F, Zhao XB, Chen ZG. China rose petal as biotemplate to produce two-dimensional ceria nanosheets. J Nanopart Res. 2011;13(12):7149.

    CAS  Article  Google Scholar 

  23. [23]

    Huang CJ, Chen C, Zhang MW, Lin LH, Ye XX, Lin S, Antonietti M, Wang XC. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat Commun. 2015;6:7698.

    Article  Google Scholar 

  24. [24]

    Chen K, Bao ZH. Synthesis and characterization of carbide nanosheets by a template-confined reaction. J Nanopart Res. 2012;14(9):1.

    Article  Google Scholar 

  25. [25]

    Wu CZ, Lu XL, Peng LL, Xu K, Peng X, Huang JL, Yu GH, Xie Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat Commun. 2013;4:2431.

    Article  Google Scholar 

  26. [26]

    Yan KL, Fan RH, Chen M, Sun K, Wang XA, Hou Q, Pan SB, Yu MX. An impregnation-reduction method to prepare graphite nanosheet/alumina composites and its high-frequency dielectric properties. Rare Met. 2017;36(3):205.

    CAS  Article  Google Scholar 

  27. [27]

    Kirillov AM, Karabach YY, Kirillova MV, Haukka M, Pombeiro AJL. Topologically unique 2D heterometallic Cu-II/Mg coordination polymer: synthesis, structural features, and catalytic use in alkane hydrocarboxylation. Cryst Growth Des. 2012;12(3):1069.

    CAS  Article  Google Scholar 

  28. [28]

    Joarder B, Chaudhari AK, Ghosh SK. A homochiral luminescent 2D porous coordination polymer with collagen-type triple helices showing selective guest inclusion. Inorg Chem. 2012;51(8):4644.

    CAS  Article  Google Scholar 

  29. [29]

    Kaneko W, Ohba M, Kitagawa S. A flexible coordination polymer crystal providing reversible structural and magnetic conversions. J Am Chem Soc. 2007;129(44):13706.

    CAS  Article  Google Scholar 

  30. [30]

    Chen MM, Zhou X, Li HX, Yang XX, Lang JP. Luminescent two-dimensional coordination polymer for selective and recyclable sensing of nitroaromatic compounds with high sensitivity in water. Cryst Growth Des. 2015;15(6):2753.

    CAS  Article  Google Scholar 

  31. [31]

    Dupont J, de Souza RF, Suarez PAZ. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev. 2002;102(10):3667.

    CAS  Article  Google Scholar 

  32. [32]

    Zhang Y, Chen J. Preparation of REPO4 (RE = La–Gd) nanorods from an ionic liquid extraction system and luminescent properties of CePO4:Tb3+. Rare Met. 2016;. doi:10.1007/s12598-016-0701-z.

    Article  Google Scholar 

  33. [33]

    Liu XF, Fechler NN, Antonietti M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem Soc Rev. 2013;42(21):8237.

    CAS  Article  Google Scholar 

  34. [34]

    Reddy MV, Yu Tse L, Bruce WKZ, Chowdari BVR. Low temperature molten salt preparation of nano-SnO2 as anode for lithium-ion batteries. Mater Lett. 2015;138:231.

    CAS  Article  Google Scholar 

  35. [35]

    Reddy MV, Adams S, Liang GTJ, Mingze IF, Van Tu An H, Chowdari BVR. Low temperature molten salt synthesis of anatase TiO2 and its electrochemical properties. Solid State Ion. 2014;262:120.

    CAS  Article  Google Scholar 

  36. [36]

    Li SW, Zhang X, Hou ZY, Cheng ZY, Ma PA, Lin J. Enhanced emission of ultra-small-sized LaF3:RE3+ (RE = Eu, Tb) nanoparticles through 1,2,4,5-benzenetetracarboxylic acid sensitization. Nanoscale. 2012;4(18):5619.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21301078 and 21261010), Jiangxi Provincial Education Department (No. GJJ13215), the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University, the Initial Fund for Doctors from Jiangxi Normal University, Youth Foundation of Jiangxi Normal University, Postdoctoral Scientific Research Foundation of Jiangxi Normal University and Scientific Research Foundation of Graduate School of Jiangxi Normal University (No. YJS2015017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheng-Liang Zhong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, H., Huang, S. et al. Low-temperature molten salt synthesis and luminescence properties of Eu(III)-based coordination polymer nanosheets. Rare Met. 40, 728–735 (2021). https://doi.org/10.1007/s12598-017-0914-9

Download citation

Keywords

  • Molten salt
  • Coordination polymer
  • Rare earth
  • Nanosheets