Skip to main content
Log in

Structural and magnetocaloric properties in hexagonal MnNiGa alloys with Co doping

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hexagonal MnNiGe-based alloys are a series of novel functional materials with potential magnetostructural transitions (MSTs). Accordingly, it was investigated the magnetic features of bulk hexagonal MnNiGa alloy and attempted to partially substitute Mn by Co atoms to tailor its structural and magnetic properties. Nonetheless, the introduction of magnetic Co atom fails to bring about the first-order phase transition and gives rise to the emergence of second phase with cubic structure instead. For ternary MnNiGa parent alloy, the second-order nature of transition is confirmed by both the absence of thermal hysteresis and the standard Arrott plot. To the end, the values of isothermal entropy change are determined by Maxwell relation, and the maximal values follow the trend predicted by the mean-field theory. Its broad transition region (~53 K) leads to only a very small value of entropy change (~2.4 J·kg−1·K−1 at a field change of 3 T). In turn, the wide transition ensures a relative large refrigerant capacity (~89.4 J·kg−1), which is comparable to that of MnNiGe-based systems. Although the substitution of Co for Mn site is unsuccessful, the chemically modified MnNiGa is still a promising candidate for the application of magnetocaloric effect (MCE) with merits of higher magnetization and better mechanical performance than MnNiGe-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Niziol S, Bombik A, Bazela W, Szytula A, Fruchart D. Crystal and magnetic structure of Co x Ni1−x MnGe system. J Magn Magn Mater. 1982;27(3):281.

    Article  Google Scholar 

  2. Liu EK, Wang WH, Feng L, Zhu W, Li GL, Chen JL, Zhang HW, Wu GH, Jiang CB, Xu HB, de Boer F. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nat Commun. 2012;3:873.

    Article  Google Scholar 

  3. Caron L, Trung NT, Brück E. Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe. Phys Rev B. 2011;84(2):020414.

    Article  Google Scholar 

  4. Quetz A, Samanta T, Dubenko I, Kangas MJ, Chan JY, Stadler S, Ali N. Phase diagram and magnetocaloric effects in aluminum doped MnNiGe. J Appl Phys. 2013;114(15):153909.

    Article  Google Scholar 

  5. Liu EK, Zhang HG, Xu GZ, Zhang XM, Ma RS, Wang WH, Chen JL, Zhang HW, Wu GH, Feng L, Zhang XX. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window. Appl Phys Lett. 2013;102(12):122405.

    Article  Google Scholar 

  6. Ma SC, Hou D, Yang F, Huang YL, Song G, Zhong ZC, Wang DH, Du YW. The antiferromagnetic-ferromagnetic conversion and magnetostructural transformation in Mn–Ni–Fe–Ge ribbons. Appl Phys Lett. 2014;104(20):202412.

    Article  Google Scholar 

  7. Samanta T, Lepkowski DL, Saleheen AU, Shankar A, Prestigiacomo J, Dubenko I, Quetz A, Oswald IWH, McCandless GT, Chan JY, Adams PW, Young DP, Ali N, Stadler S. Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based system. Phys Rev B. 2015;91(2):020401.

    Article  Google Scholar 

  8. Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34(8):527.

    Article  Google Scholar 

  9. Zhao YY, Hu FX, Bao LF, Wang J, Wu H, Huang QZ, Wu RR, Liu Y, Shen FR, Kuang H, Zhang M, Zuo WL, Zheng XQ, Sun JR, Shen BG. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J Am Chem Soc. 2015;137(5):1746.

    Article  Google Scholar 

  10. Zhang CL, Han ZD, Qian B, Shi HF, Zhu C, Chen J, Wang TZ. Magnetostructural transformation and magnetocaloric effect in MnNiGe1−x Ga x alloys. J Appl Phys. 2013;114(15):153907.

    Article  Google Scholar 

  11. Liu EK, Du Y, Chen JL, Wang WH, Zhang HW, Wu GH. Magnetostructural transformation and magnetoresponsive properties in MnNiGe1−x Sn x . IEEE Trans Magn. 2011;47(10):4041.

    Article  Google Scholar 

  12. Zhang CL, Shi HF, Nie YG, Ye EJ, Han ZD, Wang DH. Thermal-cycling-dependent magnetostructural transitions in a Ge-free system Mn0.5Fe0.5Ni (Si, Al). Appl Phys Lett. 2014;105(24):242403.

    Article  Google Scholar 

  13. Li YQ, Liu EK, Wu GH, Wang WH, Liu ZY. Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films. J Appl Phys. 2014;116(22):223906.

    Article  Google Scholar 

  14. Wang JL, Ma L, Hofmann M, Avdeev M, Kennedy SJ, Campbell SJ, Din MFM, Hoelzel M, Wu GH, Dou SX. Neutron diffraction study of MnNiGa2—structural and magnetic behavior. J Appl Phys. 2014;115(17):17A904.

    Article  Google Scholar 

  15. Ma YQ, Yang SY, Zhou Y, Wang CP, Liu XJ. A new ternary compound (Ni, Mn)2Ga in Ni–Mn–Ga system. Intermetallics. 2010;18(11):2105.

    Article  Google Scholar 

  16. Shamba P, Wang JL, Debnath JC, Kennedy SJ, Zeng R, Md Din MF, Hong F, Cheng ZX, Studer AJ, Dou SX. The magnetocaloric effect and critical behavior of the Mn0.94Ti0.06CoGe alloy. J Phys Condens Matter. 2013;25(5):056001.

    Article  Google Scholar 

  17. Bayreuther G, Bensch F, Kottler V. Quantum oscillations of properties in magnetic multilayers. J Appl Phys. 1996;79(8):4509.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11404186, 11364035, 51371111 and 11304274), the Applied Basic Research Foundation of Yunnan Province (No. 2012FD051), the Project for Innovative Research Team of Qujing Normal University (No. TD201301) and the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 13JC1402400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Li, Z., Zhou, HC. et al. Structural and magnetocaloric properties in hexagonal MnNiGa alloys with Co doping. Rare Met. 36, 601–606 (2017). https://doi.org/10.1007/s12598-016-0819-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0819-z

Keywords

Navigation