Rare Metals

, Volume 36, Issue 2, pp 95–100 | Cite as

Al–9.00 %Si–0.25 %Mg alloys modified by ytterbium

  • Kun Jia
  • Wen-Bin Yu
  • Jian-Min Yao
  • Shuo Zhang
  • Hao Wu


The effects of ytterbium (Yb) on microstructure and solidification behavior of Al–9.00 %Si–0.25 %Mg alloys were investigated. By optical microscope (OM) and scanning electron microscopy (SEM), it is found that the morphology of eutectic silicon changes from coarse plates to fine fibers by the addition of 0.7 %wt Yb. In addition, the grains of α-Al matrix are refined by Yb addition. Phase constitution of the alloy was analyzed by X-ray diffractometer (XRD) and energy dispersive spectroscopy (EDS) attached with SEM and mechanical properties were measured by hardness test. It is concluded that the Yb atoms are incorporated into the silicon by the adsorption at the solid–liquid growth front to cause the modification of eutectic silicon. Furthermore, the results of XRD and EDS analysis reveal that the Yb-containing phase forming in the alloys is Al3Yb.


Al–9.00 %Si–0.25 %Mg alloy Yb Modification Eutectic silicon 



This study was financially supported by the Natural Science Foundation Project of Chongqong, Chongqing Science and Technology Commission (No. cstc2012jjA70002) and the National Train Foundation Project of Innovation for Students, Southwest University, China (NO. 201410635002).


  1. [1]
    Dahle AK, Nogita K, McDonald SD, Dinnis C, McDonald LLu. Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels. Mater Sci Eng A. 2001;32(4):243.Google Scholar
  2. [2]
    Zhou YX, lv ZL, Zhao XC. The alterative of research and development of Al-Si alloy. Foundry Technol. 2004;25(1):13.Google Scholar
  3. [3]
    Lee YC, Dahle AK, StJohn DH. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al–Si alloys. Mater Sci Eng A. 1999;259(1):43.CrossRefGoogle Scholar
  4. [4]
    Makhlouf MM, Guthy HV. The aluminu–silicon eutectic reaction: mechanisms and crystallography. J Light Met. 2001;1(4):199.CrossRefGoogle Scholar
  5. [5]
    Tsai YC, Chou CY, Lee SL, Lin CK, Lin JC, Lim SW. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al–7Si–0.35 Mg) aluminum alloys. J Alloy Compd. 2009;487(1–2):157.CrossRefGoogle Scholar
  6. [6]
    Nogita K, Knuutinen A, McDonald SD, Dahle AK. Mechanisms of eutectic solidification in Al–Si alloys modified with Ba, Ca, Y and Yb. J Light Met. 2001;1(4):219.CrossRefGoogle Scholar
  7. [7]
    Timpel M, Wanderka N, Schlesiger R. The role of strontium in modifying aluminium-silicon alloys. Acta Mater. 2012;60(9):3920.CrossRefGoogle Scholar
  8. [8]
    Knuutinen A, Nogita K, McDonald SD, Dahle AK. Modification of Al–Si alloys with Ba, Ca, Y and Yb. J Light Met. 2001;1(4):229.CrossRefGoogle Scholar
  9. [9]
    Yi H, Peng XD, Jiang JW, Li JC, Yu YQ. Microstructure, mechanical properties and corrosion resistance of Mg–9Li–3Al–1.6 Y alloy. Chin J Rare Met. 2013;37(6):863.Google Scholar
  10. [10]
    Lu SZ, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning. Metall Trans A. 1987;18(10):1721.CrossRefGoogle Scholar
  11. [11]
    Nogita K, McDonald SD, Dahle AK. Eutectic modification of Al–Si alloys with rare earth metals. Mater Trans. 2004;45(2):323.CrossRefGoogle Scholar
  12. [12]
    Nogita K, Yasuda H, Yoshiya M, McDonald SD, Uesugi K, Takeuchi A, Suzuki Y. The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. J Alloy Compd. 2010;489(2):415.CrossRefGoogle Scholar
  13. [13]
    Nogita K, Dahle AK. Effects of boron on eutectic modification of hypoeutectic Al–Si alloys. Scr Mater. 2003;48(3):307.CrossRefGoogle Scholar
  14. [14]
    Li B, Wang HW, Jie JC. Microstructure evolution and modification mechanism of the ytterbium modified Al–7.5%Si–0.45%Mg alloys. J Alloy Compd. 2011;509(7):3387.CrossRefGoogle Scholar
  15. [15]
    Massalski TB, Murray JL, Bennett LH. Binary Alloy Phase Diagrams. Ohio: American Society for Metals; 1988. 196.Google Scholar
  16. [16]
    Binnewies M, Mike E. Thermochemical Data of Elements and Compounds. Weinheim: Wiley-VCH Verlag Gmbh; 2002. 783.CrossRefGoogle Scholar
  17. [17]
    Robert Mortimer G. Physical Chemistry. Memphis, Amsterdam: Elsevier Academic Press; 2008. 173.Google Scholar
  18. [18]
    Knuutinen A, Nogita K, McDonald SD. Porosity formation in aluminium alloy A356 modified with Ba, Ca, Y and Yb. J Light Met. 2001;1(4):241.CrossRefGoogle Scholar
  19. [19]
    Zhang LY, Jiang YH, Ma Z, Shan SF, Jia YZ, Fan CZ, Wang WK. Mechanical properties of cast A356 alloy, solidified at cooling rates enhanced by phase transition of a cooling medium. Mater Sci Eng A. 2007;448(1–2):361.CrossRefGoogle Scholar
  20. [20]
    Li HL. The behavior of antimony in AI—Si casting alloys. Nanning: Guangxi University; 2006. 27.Google Scholar
  21. [21]
    Wan D. In-situ fibrous Si phase formation in as-cast Al-7Si hypoeutectic alloy under the combined effects of rapid solidification and modification. Rare Met Mater Eng. 2010;39(s1):216.Google Scholar
  22. [22]
    Zhang LY, Jiang YH, Ma Z, Shan SF, Jia YZ, Fan CZ, Wang WK. Effect of cooling rate on solidified microstructure and mechanical properties of aluminium- A356 alloy. J Mater Process Technol. 2008;207(1–3):107.CrossRefGoogle Scholar
  23. [23]
    Kranenberg C, Johrendt D, Mewis A. Investigations about the stability range of the CaAl2Si2 type structure in the case of ternary silicides. Inorg Chem. 1999;625(11):1787.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kun Jia
    • 1
  • Wen-Bin Yu
    • 1
  • Jian-Min Yao
    • 1
  • Shuo Zhang
    • 1
  • Hao Wu
    • 2
  1. 1.School of Materials Science and EngineeringSouthwest UniversityChongqingChina
  2. 2.Guangzhou Automobile Group Motor Co, LtdGuangzhouChina

Personalised recommendations