Skip to main content
Log in

Temperature stability of magnetoresistance (MR) and MR enhancement in La1−x (Sr1−y Ag y ) x MnO3 system

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Polycrystalline samples of La1 x (Sr1 y Ag y ) x MnO3 (y = 0.0, 0.2, 0.4, 0.6, 1.0) were prepared by the solid-state reaction method. The temperature stability of magnetoresistance and magnetoresistance enhancement in La1−x (Sr1−y Ag y ) x MnO3 system with both univalent and bivalent elements doped at A site and with unchanged value of Mn3+/Mn4+ ratio were explored through the measurements of X-ray diffraction patterns, magnetization–temperature (MT) curves, resistivity–temperature (ρT) curves and magnetoresistance–temperature (MRT) curves. The results are as follows: there are two peaks in the ρT curves of the samples with Ag doping, one is caused by resistance change during the paramagnetism–ferromagnetism transition, and the other is from boundary-dependent scattering of conduction electrons on the boundaries of grains. The peak value of MR increases with increasing Ag doping content, and it increases from 8.2 % for y = 0.2 to 29.6 % for y = 1.0 under the magnetic field of B = 0.8 T; MR remains a constant of 12 % in the temperature range of 218–168 K for the sample with y = 1.0, and the temperature stability of MR is in favor of the practical application of MR.

Graphical Abstract

There are two peaks in the ρT curves of the samples with Ag doping; A sharp MR peak exists in high temperature range, this is the character of intrinsic magnetoresistance which increases continuously with temperature decreasing in the low temperature range, and this is the character of low-field magnetoresistance, the competition between them leads to temperature stability of magnetoresistance (MR) in intermediate temperature range. MR basically remains the constant of 12 % in the temperature range of 218–168 K for the sample with y = 1.0, so the temperature stability of MR has been realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peng ZS, Wang GY, Liu P, Niu XF. Enhancement of room-temperature magnetoresistance in La0.5Sm0.2Sr0.5MnO3/(Ag2O) x/2. Rare Met. 2010;29(1):45.

    Article  CAS  Google Scholar 

  2. Peng ZS, Song QX, Yang G, Wang GY, Tang YG, Mao Q. Influence of low Cr3+ or V3+ substitute Mn3+ on charge ordering phase in La0.4Ca0.6MnO3. Chinese J Rare Metals. 2012;36(1):74.

    CAS  Google Scholar 

  3. Wang GY, Peng ZS, Tang YG, Liu P, Niu XF. Structure and magnetoresistance of La0.5Sm0.2Sr0.3MnO3/Ag x two-phase composite. Chinese J Rare Metals. 2010;34(2):210.

    CAS  Google Scholar 

  4. Yang J, Tang YG, Wang GY, Cai ZR, Peng ZS. Electric transport property and low-field magnetoresistance effect of (1−x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3) composite system. Chinese J Rare Metals. 2011;35(6):865.

    CAS  Google Scholar 

  5. Peng ZS, Yang G, Wang GY, Tang YG, Guo HY, Mao Q. Destruction of charge ordering phase in La0.4Ca0.6MnO3 induced by low Cr doping. Rare Met. 2011;30(3):241.

    Article  CAS  Google Scholar 

  6. Goodenough JB. Colossal magnetoresistance in Ln1−x A x MnO3 perovskite. Aus J Phys. 1999;52(2):155.

    CAS  Google Scholar 

  7. Liu N, Guo HY, Peng ZS, Cai ZR, Qu Z. Magneto-electric behaviors of La0.67 − x Nd x Sr0.33MnO3 system. J Inorg Mater. 2008;23(2):271.

    CAS  Google Scholar 

  8. Vassal N, Salmon E, Fauvarque JF. Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte. J Electrochem Soc. 1999;146(1):20.

    Article  CAS  Google Scholar 

  9. Wang WQ, Peng ZS, Yan GQ, Mao Q. Magnetic property of manganite La0.5Dy0.2Sr0.3MnO3 doped with double rare-earth. Chinese J Rare Metals. 2008;32(1):46.

    Article  Google Scholar 

  10. Sahana M, Singh RN, Shivakumara C, Vasanthacharya I NY, Hegde I MS, Subramanian S, Prasad V, Subramanyam SV. Colossal magnetoresistance in epitaxial La(1 − x − y)Na y MnO3 thin films. Appl Phys Lett. 1997;70(2):2909.

    Article  CAS  Google Scholar 

  11. Ye SL, Song WH, Dai JM, Wang SG, Wang KY, Yuan CL, Sun YP. Effect of Li substitution on the crystal structure and magnetism of LaMnO3. J Appl Phys. 2000;88(10):5915.

    Article  CAS  Google Scholar 

  12. Abdelmoula N, Cheikh-Rouhou A, Reversat L. Structural, magnetic and magnetoresistance properties of La0.7Sr0.3 − x Na x MnO3 manganites. J Phys Condens Mater. 2001;13(3):449.

    Article  CAS  Google Scholar 

  13. Bhattacharya S, Banerjee A, Pal S, Chatterjee P, Mukherjee RK, Chaudhuri BK. Transport properties of Na doped La1−x Ca x − y Na y MnO3 measured in a pulsed magnetic field. J Phys Condens Mater. 2002;14(43):10221.

    Article  CAS  Google Scholar 

  14. Yang G, Tang YG, Wang GY, Song QX, Zhang MY, Peng ZS. Effect of Ag doping on electric transport property and magnetoresistance of La0.6Ca0.4MnO3. Chinese J Rare Metals. 2012;36(2):266.

    CAS  Google Scholar 

  15. Zhang N, Wang F, Zhong W, Ding WP. Spin-dependent interfacial tunneling and tunnel-type GMR in granular perovskite family LaSr x MnO3(0.05 ≤ x ≤ 0.45). J Phys Condens Mater. 1999;11(12):2625.

    Article  CAS  Google Scholar 

  16. Zhang N, Ding WP, Zhong W, Xing DY, Du YW. Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3. Phys Rev B. 1997;56(13):8138.

    Article  CAS  Google Scholar 

  17. Yang YP, Yuan SL. Mechanism study of double resistance-peak in the La2/3Ca1/3Mn1−x Cu x O3 system. J Wuhan Univ Technol Transport Sci Eng. 2006;30(4):642.

    Google Scholar 

  18. Helmolt RV, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant negative magnetoresistance in perovskite like La2/3Ba1/3MnO x ferromagnetic films. Phys Rev Lett. 1993;71(14):2331.

    Article  Google Scholar 

  19. Mccormack M, Jin S, Tiefe TH, Raychaudhuri AK, Pai SP, Pinto R. Very large magnetoresistance in perovskite-like La–Ca–Mn–O thin films. Appl Phys Lett. 1994;64(22):3045.

    Article  CAS  Google Scholar 

  20. Khare N, Monaril UP, Gupta AK, López-Quintela A, Causa MT, Tovar M, Oseroff S. Temperature dependence of magnetoresistance and nonlinear conductance of the crystal grain boundary in epitaxial La0.67Ba0.33MnO3 thin films. Appl Phys Lett. 2002;81(2):325.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 19934003); the Key Program of Natural Science Foundation of Anhui Province (No. KJ2011A259); the Program of Professors and Doctors’ Research Startup Foundation of Suzhou College (Nos. 2011jb01 and 2011jb02), and the Cultivating Base of Anhui Key Laboratory of Spintronics and Nano-materials Research Program(No. 2010YKF04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Sheng Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, YG., Wang, GY., Yan, GQ. et al. Temperature stability of magnetoresistance (MR) and MR enhancement in La1−x (Sr1−y Ag y ) x MnO3 system. Rare Met. 32, 81–86 (2013). https://doi.org/10.1007/s12598-013-0010-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0010-8

Keywords

Navigation