Optimum design and selection of wire rope for hot rolling shop applications


Optimal selection of wire rope for various industrial applications is a multidisciplinary procedure. In this paper, optimum selection of wire rope for winch trolley in hot rolling shop is comprehensively demonstrated using finite element analysis. Powerfoam wire rope can be operated at lower D/d ratio and have 2.5 times longer service life as compared to their stranded conventional counterpart. The parameter-based geometric models of commercially available multi-layer wire ropes of 1 + 6 + 6 strand construction are designed using modelling software, SolidWorks, and procedure is followed by finite element analysis on ANSYS. The service life of wire rope is a function of factor of safety. Finally, cost analysis is delivered for optimum selection of wire rope, as an economical insight of the study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11



Axial tensile force (N)

Ff :

Frictional force b/w rails and wheels (N)

Fa :

Force to accelerate the trolley in horizontal direction (N)


Young modulus of elasticity (N/mm2)


Poisson’s ratio

amax :

Maximum acceleration of winch trolley (m/s2)


Co-efficient of friction

σa :

Axial stress (N/mm2)

σb :

Bending stress (N/mm2)

σr :

Resultant stress (N/mm2)


Cross-section area of rope (mm2)


Diameter of rope (mm)


Diameter of drum/sheave (mm)


Wire stress tensile factor


Wire stress bending factor


Length of rope (mm)

Nr :

Number of ropes in the system

dc :

Core diameter (mm)

nw :

Number of wires in each strand

Nls :

Number of layers in strand

Ns :

Number of strands

Lo :

Overall length of each geometric model (mm)


Number of failures of rope per year

Cwr :

Annual cost of wire rope (₹)

Cp :

Annual loss of profit (₹)

Cf :

Annual cost of fuel (₹)

Ce :

Annual cost of electricity (₹)

Co :

Annual overheads (₹)

Sut :

Ultimate tensile strength (N/mm2)

Sy :

Yield tensile strength (N/mm2)

nb :

Number of billets in each cycle

mb :

Mass of each billet (kg)

mt :

Mass of winch trolley (kg)

σmax :

Maximum stress in wire rope (N/mm2)

δmax :

Maximum deflection induced in wire rope (mm)

FOSmin :

Minimum factor of safety of wire rope

FOS16 :

FOSmin of 16 mm diameter wire rope

FOS18 :

FOSmin of 18 mm diameter wire rope

FOS20 :

FOSmin of 20 mm diameter wire rope

L16 :

Expected service/operational life of 16 mm diameter conventional wire rope

Lp16 :

Expected service/operational life of 16 mm diameter powerfoam wire rope

L18 :

Expected service/operational life of 18 mm diameter conventional wire rope

Lp18 :

Expected service/operational life of 18 mm diameter powerfoam wire rope

L20 :

Expected service/operational life of 20 mm diameter conventional wire rope

Lp20 :

Expected service/operational life of 20 mm diameter powerfoam wire rope


Rupee (Indian currency)


  1. 1.

    Costello, G.A.: Theory of Wire Rope. Springer, Berlin (1997). https://doi.org/10.1016/j.engfailanal.2016.09.002

  2. 2.

    Wire rope handbook by Usha Martin Pvt. Ltd

  3. 3.

    Kumar, K., Goyal, D., Banwait, S.S.: Effect of key parameters on fretting behaviour of wire rope: a review. Arch. Comput. Methods Eng. 27(2), 549–561 (2019). https://doi.org/10.1007/s11831-019-09326-y

    Article  Google Scholar 

  4. 4.

    Feyrer, K.: Wire Ropes (p. 317). Springer, Berlin (2007). https://doi.org/10.1007/978-3-642-54996-0

  5. 5.

    Singh, R.P., Mallick, M., Verma, M.K.: Studies on failure behaviour of wire rope used in underground coal mines. Eng. Fail. Anal. 70, 290–304 (2016). https://doi.org/10.1016/j.engfailanal.2016.09.002

    Article  Google Scholar 

  6. 6.

    Krishna, M.M., Shunmugam, M.S., Prasad, N.S.: A study on the sealing performance of bolted flange joints with gaskets using finite element analysis. Int. J. Press. Vessels Pip. 84(6), 349–357 (2007). https://doi.org/10.1016/j.ijpvp.2007.02.001

    Article  Google Scholar 

  7. 7.

    He, X.: Recent development in finite element analysis of clinched joints. Int. J. Adv. Manuf. Technol. 48(5–8), 607–612 (2010). https://doi.org/10.1007/s00170-009-2306-2

    Article  Google Scholar 

  8. 8.

    Huang, L., Sheikh, A.H., Ng, C.T., Griffith, M.C.: An efficient finite element model for buckling analysis of grid stiffened laminated composite plates. Compos. Struct. 122, 41–50 (2015). https://doi.org/10.1016/j.compstruct.2014.11.039

    Article  Google Scholar 

  9. 9.

    Danenko, V.F., Gurevich, L.M., Kushkina, E.Y., Gladskikh, E.B.: New applications of compactedsteel strands and wire rope. Steel Transl. 46(11), 757–763 (2016). https://doi.org/10.3103/S0967091216110048

    Article  Google Scholar 

  10. 10.

    Phillips, J.W., Costello, G.A.: Analysis of wire ropes with internal-wire-rope cores. J. Appl. Mech. 52(3), 510–516 (1985). https://doi.org/10.1115/1.3169092

    Article  Google Scholar 

  11. 11.

    Kumar, K., Botsis, J.: Contact stresses in multilayered strands under tension and torsion. J. Appl. Mech. 68(3), 432–440 (2001). https://doi.org/10.1115/1.1355777

    Article  Google Scholar 

  12. 12.

    Jiang, W.G., Yao, M.S., Walton, J.M.: A concise finite element model for simple straight wire rope strand. Int. J. Mech. Sci. 41(2), 143–161 (1999). https://doi.org/10.1016/S0020-7403(98)00039-3

    Article  Google Scholar 

  13. 13.

    Sun, J.F., Wang, G.L., Zhang, H.O.: Elasto-plastic contact problem of laying wire rope using FE analysis. Int. J. Adv. Manuf. Technol. 26(1–2), 17–22 (2005). https://doi.org/10.1007/s00170-004-2120-9

    Article  Google Scholar 

  14. 14.

    Erdine, E., Kallegias, A.: Interwoven reinforced concrete structures: integration of design and fabrication drivers through parametric design processes. Des. Stud. 52, 198–220 (2017). https://doi.org/10.1016/j.destud.2017.06.002

    Article  Google Scholar 

  15. 15.

    Mathiyazhagan, K., Sengupta, S., Mathivathanan, D.: Challenges for implementing green concept in sustainable manufacturing: a systematic review. OPSEARCH 56(1), 32–72 (2019). https://doi.org/10.1007/s12597-019-00359-2

    Article  Google Scholar 

  16. 16.

    Oxman, R.: Thinking difference: theories and models of parametric design thinking. Des. Stud. 52, 4–39 (2017). https://doi.org/10.1016/j.destud.2017.06.001

    Article  Google Scholar 

  17. 17.

    Shim, V.B., Fernandez, J.W., Gamage, P.B., Regnery, C., Smith, D.W., Gardiner, B.S., et al.: Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture. J. Biomech. 47(15), 3598–3604 (2014). https://doi.org/10.1016/j.jbiomech.2014.10.001

    Article  Google Scholar 

  18. 18.

    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Oxford (2013)

    Google Scholar 

  19. 19.

    Stanova, E., Fedorko, G., Fabian, M., Kmet, S.: Computer modelling of wire strands and ropes Part I: theory and computer implementation. Adv. Eng. Softw. 42(6), 305–315 (2011). https://doi.org/10.1016/j.advengsoft.2011.02.008

    Article  Google Scholar 

  20. 20.

    Stanova, E., Fedorko, G., Fabian, M., Kmet, S.: Computer modelling of wire strands and ropes part II: finite element-based applications. Adv. Eng. Softw. 42(6), 322–331 (2011). https://doi.org/10.1016/j.advengsoft.2011.02.010

    Article  Google Scholar 

  21. 21.

    Beltrán, J.F., Vargas, D.: Effect of broken rope components distribution throughout rope cross-section on polyester rope response: numerical approach. Int. J. Mech. Sci. 64(1), 32–46 (2012). https://doi.org/10.1016/j.ijmecsci.2012.08.005

    Article  Google Scholar 

  22. 22.

    Xiang, L., Wang, H.Y., Chen, Y., Guan, Y.J., Wang, Y.L., Dai, L.H.: Modeling of multi-strand wire ropes subjected to axial tension and torsion loads. Int. J. Solids Struct. 58, 233–246 (2015). https://doi.org/10.1016/j.ijsolstr.2015.01.007

    Article  Google Scholar 

  23. 23.

    Fedorko, G., Stanova, E., Molnar, V., Husakova, N., Kmet, S.: Computer modelling and finite element analysis of spiral triangular strands. Adv. Eng. Softw. 73, 11–21 (2014). https://doi.org/10.1016/j.advengsoft.2014.02.004

    Article  Google Scholar 

  24. 24.

    Van Tran, P., Maegawa, K., Fukada, S.: Experiments and dynamic finite element analysis of a wire-rope rockfall protective fence. Rock Mech. Rock Eng. 46(5), 1183–1198 (2013). https://doi.org/10.1007/s00603-012-0340-0

    Article  Google Scholar 

  25. 25.

    Cao, X., Wu, W.: The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation and experimental verification. Int. J. Mech. Sci. 142, 289–303 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.051

    Article  Google Scholar 

  26. 26.

    Onur, Y.A.: Experimental and theoretical investigation of prestressing steel strand subjected to tensile load. Int. J. Mech. Sci. 118, 91–100 (2016). https://doi.org/10.1016/j.ijmecsci.2016.09.006

    Article  Google Scholar 

  27. 27.

    Meng, F., Chen, Y., Du, M., Gong, X.: Study on effect of inter-wire contact on mechanical performance of wire rope strand based on semi-analytical method. Int. J. Mech. Sci. 115, 416–427 (2016). https://doi.org/10.1016/j.ijmecsci.2016.07.012

    Article  Google Scholar 

  28. 28.

    Chen, Y., Meng, F.: Numerical study on wear evolution and mechanical behavior of steel wires based on semi-analytical method. Int. J. Mech. Sci. 148, 684–697 (2018). https://doi.org/10.1016/j.ijmecsci.2018.09.030

    Article  Google Scholar 

  29. 29.

    Sadeghi, H., Davey, K., Darvizeh, R., Darvizeh, A.: A scaled framework for strain rate sensitive structures subjected to high rate impact loading. Int. J. Impact Eng 125, 229–245 (2019). https://doi.org/10.1016/j.ijimpeng.2018.11.008

    Article  Google Scholar 

  30. 30.

    Salih, S., Davey, K., Zou, Z.: Frequency-dependent cohesive-zone model for fatigue. Int. J. Solids Struct. 152, 228–237 (2018). https://doi.org/10.1016/j.ijsolstr.2018.06.030

    Article  Google Scholar 

  31. 31.

    Zalnezhad, E., Sarhan, A.A., Jahanshahi, P.: A new fretting fatigue testing machine design, utilizing rotating–bending principle approach. Int. J. Adv. Manuf. Technol. 70(9–12), 2211–2219 (2014). https://doi.org/10.1007/s00170-013-5457-0

    Article  Google Scholar 

  32. 32.

    Chen, Y., Meng, F., Gong, X.: Study on performance of bended spiral strand with interwire frictional contact. Int. J. Mech. Sci. 128, 499–511 (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.009

    Article  Google Scholar 

  33. 33.

    Feng, C., Zhang, D., Chen, K., Guo, Y.: Study on viscoelastic friction and wear between friction linings and wire rope. Int. J. Mech. Sci. 142, 140–152 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.046

    Article  Google Scholar 

  34. 34.

    Lietch, L.C., Lee, H., Mall, S.: Fretting fatigue behavior of Ti–6Al–4V under seawater environment. Mater. Sci. Eng., A 403(1–2), 281–289 (2005). https://doi.org/10.1016/j.msea.2005.05.047

    Article  Google Scholar 

  35. 35.

    Kim, S.H., Bae, R.H., Do Kwon, J.: Bending fatigue characteristics of wire rope. J. Mech. Sci. Technol. 26(7), 2107–2110 (2012). https://doi.org/10.1007/s12206-011-1251-9

    Article  Google Scholar 

  36. 36.

    Peng, Y.X., Chang, X.D., Sun, S.S., Zhu, Z.C., Gong, X.S., Zou, S.Y., et al.: The friction and wear properties of steel wire rope sliding against itself under impact load. Wear 400, 194–206 (2018). https://doi.org/10.1016/j.wear.2018.01.010

    Article  Google Scholar 

  37. 37.

    Vennemann, O., Törnqvist, R., Ernst, B., Winter, S., Frazer, I.: Bending fatigue tests using a suitable NDT method to determine lifetime of large diameter wire ropes for offshore lifting applications. In: ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering (pp. 155–161). American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2008-57128

  38. 38.

    Mouradi, H., El Barkany, A., El Biyaali, A.: Steel wire ropes failure analysis: experimental study. Eng. Fail. Anal. 91, 234–242 (2018). https://doi.org/10.1016/j.engfailanal.2018.04.019

    Article  Google Scholar 

  39. 39.

    Samset, I.: Winch and Cable Systems, vol. 18. Springer, Berlin (2013)

    Google Scholar 

  40. 40.

    Onur, Y.A., İmrak, C.E., Onur, T.Ö.: Invstigation on bending over sheave fatigue life determination of rotation resistant steel wire rope. Exp. Techniq. 41(5), 475–482 (2017). https://doi.org/10.1007/s40799-017-0188-z

    Article  Google Scholar 

  41. 41.

    US Navy Wire Rope handbook vol-II. In: Wire Rope Analysis and Design Data (1987)

  42. 42.

    Shigley, J.E.: Shigley’s Mechanical Engineering Design. Tata McGraw-Hill Education, New York (2011)

    Google Scholar 

  43. 43.

    Mogale, D.G., Cheikhrouhou, N., Tiwari, M.K.: Modelling of sustainable food grain supply chain distribution system: a bi-objective approach. Int. J. Prod. Res. (2019). https://doi.org/10.1080/00207543.2019.1669840

    Article  Google Scholar 

  44. 44.

    De, A., Mogale, D.G., Zhang, M., Pratap, S., Kumar, S.K., Huang, G.Q.: Multi-period multi-echelon inventory transportation problem considering stakeholders behavioural tendencies. Int. J. Prod. Econ. 107566 (2019)

  45. 45.

    Maiyar, L.M., Thakkar, J.J.: Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization. Transp. Res. Part E Logist. Transp. Rev. 127, 220–248 (2019). https://doi.org/10.1016/j.tre.2019.05.006

    Article  Google Scholar 

  46. 46.

    Gansterer, M., Hartl, R.F.: Collaborative vehicle routing: a survey. Eur. J. Oper. Res. 268(1), 1–12 (2018)

    Article  Google Scholar 

  47. 47.

    Xie, M., Goh, T.N., Tang, Y.: On changing points of mean residual life and failure rate function for some generalized Weibull distributions. Reliab. Eng. Syst. Saf. 84(3), 293–299 (2004). https://doi.org/10.1016/j.ress.2003.12.005

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Krishan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Singh, S. & Banwait, S.S. Optimum design and selection of wire rope for hot rolling shop applications. OPSEARCH 58, 29–53 (2021). https://doi.org/10.1007/s12597-020-00468-3

Download citation


  • Geometric modeling
  • Finite element analysis
  • Design
  • Optimum selection
  • Steel wire rope