Parametric analysis of a green electrical discharge machining process using DEMATEL and SIR methods


To achieve safer machining environment, and minimize emission of harmful and toxic substances during electrical discharge machining (EDM) process along with improvement in its performance, this paper emphasizes on identifying the best parametric combination of a green EDM process using superiority and inferiority ranking (SIR) method. Decision making trial and evaluation laboratory method is also employed to visualize the interrelationships between the responses of the said process while splitting them into cause and effect groups. In this process, peak current, pulse duration, dielectric level and flushing pressure are the input parameters, while process time, relative tool wear ratio, process energy, concentration of aerosol and dielectric consumption are considered as the responses. The optimal parametric combination as derived employing the SIR method is validated with the help of developed regression equations for each of the responses, which show that the adopted approach outperforms the other popular optimization techniques in obtaining the best mix of the green EDM process parameters for having improved machining performance and less hazardous effects on the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Abbas, N.M., Solomon, D.G., Bahari, M.F.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 47(7–8), 1214–1228 (2007)

    Article  Google Scholar 

  2. 2.

    Bhuyan, R., Routara, B.: Optimization the machining parameters by using VIKOR and entropy weight method during EDM process of Al-18% SiCp metal matrix composite. Decis. Sci. Lett. 5(2), 269–282 (2016)

    Article  Google Scholar 

  3. 3.

    Brans, J.P., Vincke, P., Mareschal, B.: How to select and how to rank projects: the PROMETHEE method. Eur. J. Oper. Res. 24(2), 228–238 (1986)

    Article  Google Scholar 

  4. 4.

    Chakraborty, S., Das, P.P.: A multivariate quality loss function approach for parametric optimization of non-traditional machining processes. Manag. Sci. Lett. 8(8), 873–884 (2018)

    Article  Google Scholar 

  5. 5.

    Chakraborty, S., Das, P.P., Kumar, V.: Application of grey-fuzzy logic technique for parametric optimization of non-traditional machining processes. Grey Syst.: Theory Appl. 8(1), 46–68 (2018)

    Article  Google Scholar 

  6. 6.

    Chen, Y.C., Lien, H.P., Tzeng, G.H.: Measures and evaluation for environment watershed plans using a novel hybrid MCDM model. Expert Syst. Appl. 37(2), 926–938 (2010)

    Article  Google Scholar 

  7. 7.

    Choi, A.C.K., Kaebernick, H., Lai, W.H.: Manufacturing processes modelling for environmental impact assessment. J. Mater. Process. Technol. 70(1–3), 231–238 (1997)

    Article  Google Scholar 

  8. 8.

    Das, P.P., Chakraborty, S.: Parametric optimization of non-traditional machining processes using Taguchi method and super ranking concept. Yugosl. J. Oper. Res. (2018).

    Article  Google Scholar 

  9. 9.

    Dewangan, S., Gangopadhyay, S., Biswas, C.K.: Multi-response optimization of surface integrity characteristics of EDM process using grey-fuzzy logic-based hybrid approach. Eng. Sci. Technol., Int. J. 18(3), 361–368 (2015)

    Google Scholar 

  10. 10.

    El-Taweel, T.A.: Multi-response optimization of EDM with Al–Cu–Si–TiC P/M composite electrode. Int. J. Adv. Manuf. Technol. 44(1–2), 100–113 (2009)

    Article  Google Scholar 

  11. 11.

    Fontela, E., Gabus, A.: The DEMATEL Observer, DEMATEL 1976 Report. Battelle Geneva Research Center, Geneva (1976)

    Google Scholar 

  12. 12.

    Gabus, A., Fontela, E.: Perceptions of the world problematique: communication procedure, communicating with those bearing collective responsibility (No. 1). DEMATEL Report (1973)

  13. 13.

    Gopalakannan, S., Senthilvelan, T.: Optimization of machining parameters for EDM operations based on central composite design and desirability approach. J. Mech. Sci. Technol. 28(3), 1045–1053 (2014)

    Article  Google Scholar 

  14. 14.

    Govindan, K., Rajendran, S., Sarkis, J., Murugesan, P.: Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. J. Clean. Prod. 98, 66–83 (2015)

    Article  Google Scholar 

  15. 15.

    Hamidi, N., Yousefi, P., Rahimi, A., Jabari, F.: A hybrid of Borda and DEMATEL for productivity improvement. Manag. Sci. Lett. 2(8), 2757–2764 (2012)

    Article  Google Scholar 

  16. 16.

    Ho, K.H., Newman, S.T.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43(13), 1287–1300 (2003)

    Article  Google Scholar 

  17. 17.

    Ho, W., Xu, X., Dey, P.K.: Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202(1), 16–24 (2010)

    Article  Google Scholar 

  18. 18.

    Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making Methods and Applications. Springer, Berlin (1981)

    Book  Google Scholar 

  19. 19.

    Jagadish, Ray, A.: Multi-objective optimization of green EDM: an integrated theory. J. Inst. Eng. (India): Ser. C 96(1), 41–47 (2015)

    Google Scholar 

  20. 20.

    Jagadish, Ray, A.: Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA). Int. J. Adv. Manuf. Technol. 87(5–8), 1299–1311 (2016)

    Article  Google Scholar 

  21. 21.

    Janic, M., Reggiani, A.: An application of the multiple criteria decision making (MCDM) analysis to the selection of a new hub airport. Eur. J. Transp. Infrastruct. Res. 2(2), 113–141 (2002)

    Google Scholar 

  22. 22.

    Joshi, S.N., Pande, S.S.: Intelligent process modeling and optimization of die-sinking electric discharge machining. Appl. Soft Comput. 11(2), 2743–2755 (2011)

    Article  Google Scholar 

  23. 23.

    Kung, K.Y., Horng, J.T., Chiang, K.T.: Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int. J. Adv. Manuf. Technol. 40(1–2), 95–104 (2009)

    Article  Google Scholar 

  24. 24.

    Kuo, T.C., Chang, S.H., Huang, S.H.: Environmentally conscious design by using fuzzy multi-attribute decision-making. Int. J. Adv. Manuf. Technol. 29(3–4), 209–215 (2006)

    Article  Google Scholar 

  25. 25.

    Liu, F., Zhang, H.: A decision-making framework model of green manufacturing. Chin. J. Mech. Eng. 35, 11–15 (1999)

    Google Scholar 

  26. 26.

    Marzouk, M.: A superiority and inferiority ranking model for contractor selection. Constr. Innov. 8(4), 250–268 (2008)

    Article  Google Scholar 

  27. 27.

    Mukherjee, R., Chakraborty, S.: Selection of EDM process parameters using biogeography-based optimization algorithm. Mater. Manuf. Process. 27(9), 954–962 (2012)

    Article  Google Scholar 

  28. 28.

    Rebai, A.: BBTOPSIS: a bag based technique for order preference by similarity to ideal solution. Fuzzy Sets Syst. 60(2), 143–162 (1993)

    Article  Google Scholar 

  29. 29.

    Rebai, A.: Canonical fuzzy bags and bag fuzzy measures as a basis for MADM with mixed non cardinal data. Eur. J. Oper. Res. 78(1), 34–48 (1994)

    Article  Google Scholar 

  30. 30.

    Reddy, V.V., Valli, P.M., Kumar, A., Reddy, C.S.: Multi-objective optimization of electrical discharge machining of PH17-4 stainless steel with surfactant-mixed and graphite powder-mixed dielectric using Taguchi-data envelopment analysis-based ranking method. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 229(3), 487–494 (2015)

    Article  Google Scholar 

  31. 31.

    Roy, B., Slowinski, R., Treichel, W.: Multicriteria programming of water supply systems for rural areas. J. Am. Water Resour. Assoc. 28(1), 13–31 (1992)

    Article  Google Scholar 

  32. 32.

    Roy, B.: Multicriteria Methodology for Decision Aiding, vol. 12. Springer, Berlin (2013)

    Google Scholar 

  33. 33.

    Roy, T., Dutta, R.K.: Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective optimization of electro discharge machining process. Soft Comput. (2018).

    Article  Google Scholar 

  34. 34.

    Sheng, P., Srinivasan, M., Kobayashi, S.: Multi-objective process planning in environmentally conscious manufacturing: a feature-based approach. CIRP Ann.—Manuf. Technol. 44(1), 433–437 (1995)

    Article  Google Scholar 

  35. 35.

    Singh, J., Sharma, R.K.: Green EDM strategies to minimize environmental impact and improve process efficiency. J. Manuf. Sci. Prod. 16(4), 273–290 (2016)

    Google Scholar 

  36. 36.

    Singh, N.K., Pandey, P.M., Singh, K.K., Sharma, M.K.: Steps towards green manufacturing through EDM process: A review. Cogent Eng. 3(1), 13 (2016).

    Article  Google Scholar 

  37. 37.

    Singh, P.N., Raghukandan, K., Pai, B.C.: Optimization by grey relational analysis of EDM parameters on machining Al-10% SiCP composites. J. Mater. Process. Technol. 155, 1658–1661 (2004)

    Article  Google Scholar 

  38. 38.

    Sivapirakasam, S.P., Mathew, J., Surianarayanan, M.: Multi-attribute decision making for green electrical discharge machining. Expert Syst. Appl. 38(7), 8370–8374 (2011)

    Article  Google Scholar 

  39. 39.

    Tam, C.M., Tong, T.K., Wong, Y.W.: Selection of concrete pump using the superiority and inferiority ranking method. J. Constr. Eng. Manag. 130(6), 827–834 (2004)

    Article  Google Scholar 

  40. 40.

    Tan, X.C., Liu, F., Cao, H.J., Zhang, H.: A decision-making framework model of cutting fluid selection for green manufacturing and a case study. J. Mater. Process. Technol. 129(1–3), 467–470 (2002)

    Article  Google Scholar 

  41. 41.

    Tang, L., Du, Y.T.: Experimental study on green electrical discharge machining in tap water of Ti–6Al–4V and parameters optimization. Int. J. Adv. Manuf. Technol. 70(1–4), 469–475 (2014)

    Article  Google Scholar 

  42. 42.

    Tang, L., Du, Y.T.: Multi-objective optimization of green electrical discharge machining Ti–6Al–4V in tap water via grey-Taguchi method. Mater. Manuf. Process. 29(5), 507–513 (2014)

    Article  Google Scholar 

  43. 43.

    Tavana, M., Zareinejad, M., Santos-Arteaga, F.J.: An intuitionistic fuzzy-grey superiority and inferiority ranking method for third-party reverse logistics provider selection. Int. J. Syst. Sci.: Oper. Logist. 5(2), 175–194 (2018)

    Google Scholar 

  44. 44.

    Tönshoff, H.K., Egger, R., Klocke, F.: Environmental and safety aspects of electrophysical and electrochemical processes. CIRP Ann. 45(2), 553–568 (1996)

    Article  Google Scholar 

  45. 45.

    Wang, X., Chen, L., Dan, B., Wang, F.: Evaluation of EDM process for green manufacturing. Int. J. Adv. Manuf. Technol. 94(1–4), 633–641 (2018)

    Article  Google Scholar 

  46. 46.

    Wu, X., Zhang, S., Qiu, S., Sun, L.: Decision making method of process parameter selection for green manufacturing based on a DEMATEL-VIKOR algorithm. J. Mech. Eng. 49(7), 91–100 (2013)

    Article  Google Scholar 

  47. 47.

    Xu, X.: The SIR method: a superiority and inferiority ranking method for multiple criteria decision making. Eur. J. Oper. Res. 131(3), 587–602 (2001)

    Article  Google Scholar 

  48. 48.

    Yeo, S.H., Neo, K.G., Tan, H.C.: Assessment of health hazards in production of printed paper packages. Int. J. Adv. Manuf. Technol. 14(5), 376–384 (1998)

    Article  Google Scholar 

  49. 49.

    Yeo, S.H., New, A.K.: A method for green process planning in electric discharge machining. Int. J. Adv. Manuf. Technol. 15(4), 287–291 (1999)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shankar Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, P.P., Chakraborty, S. Parametric analysis of a green electrical discharge machining process using DEMATEL and SIR methods. OPSEARCH 57, 513–540 (2020).

Download citation


  • Green EDM
  • SIR method
  • Process parameter
  • Response
  • Optimization