Advertisement

OPSEARCH

, Volume 55, Issue 1, pp 14–49 | Cite as

Evaluating and selecting partners in sustainable supply chain network: a comparative analysis of combined fuzzy multi-criteria approaches

  • Nadine Kafa
  • Yasmina Hani
  • Abederrahman El Mhamedi
Application Article
  • 190 Downloads

Abstract

Partner selection is a crucial problem in supply chain management in which it is essential today to integrate sustainability criteria due to regulation, stakeholder pressers and economic interests. Thus, a sustainability-focused evaluation model for partner selection is required in order to improve the overall performance of the supply chain. This paper develops a new hybrid approach to evaluate and select the partners (suppliers and 3PRL providers) in sustainable supply chain network by combining Fuzzy Analytic Hierarchy Process (F-AHP) with Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (F-PROMETHEE), and Fuzzy Technique for Order Performance by Similarity to Ideal Solution (F-TOPSIS). A set of sustainability criteria for both supplier and 3PRL provider selection is proposed based on extensive literature review and experts’ opinions. F-AHP is used to calculate the priority weight of each criterion. Then, F-PROMETHEE and F-TOPSIS are both used to rank the partners comparatively. The validity and efficacy of the proposed approach is demonstrated through an application for selecting partners in the case of light bulbs recycling which has been strengthened by sensitivity analysis.

Keywords

Sustainable supply chain Partner selection Comparative study Triple bottom line approach AHP PROMETHEE TOPSIS 

References

  1. 1.
    Zandieh, M., Chensebli, A.: Reverse logistics network design: a water flow-like algorithm approach. OPSEARCH 53, 667–692 (2016).  https://doi.org/10.1007/s12597-016-0250-0 CrossRefGoogle Scholar
  2. 2.
    Kannan, G., Pokharel, S., Sasi Kumar, P.: A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resour. Conserv. Recycl. 54, 28–36 (2009).  https://doi.org/10.1016/j.resconrec.2009.06.004 CrossRefGoogle Scholar
  3. 3.
    Senthil, S., Srirangacharyulu, B., Ramesh, A.: A decision making methodology for the selection of reverse logistics operating channels. Procedia Eng. 38, 418–428 (2012).  https://doi.org/10.1016/j.proeng.2012.06.052 CrossRefGoogle Scholar
  4. 4.
    Meade, L., Sarkis, J.: A conceptual model for selecting and evaluating third-party reverse logistics providers. Supply Chain Manag. Int. J. 7, 283–295 (2002).  https://doi.org/10.1108/13598540210447728 CrossRefGoogle Scholar
  5. 5.
    Zhao, K., Yu, X.: A case based reasoning approach on supplier selection in petroleum enterprises. Expert Syst. Appl. 38, 6839–6847 (2011).  https://doi.org/10.1016/j.eswa.2010.12.055 CrossRefGoogle Scholar
  6. 6.
    Govindan, K., Khodaverdi, R., Jafarian, A.: A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 47, 345–354 (2013).  https://doi.org/10.1016/j.jclepro.2012.04.014 CrossRefGoogle Scholar
  7. 7.
    Lee, A.H.I., Kang, H.-Y., Hsu, C.-F., Hung, H.-C.: A green supplier selection model for high-tech industry. Expert Syst. Appl. 36, 7917–7927 (2009).  https://doi.org/10.1016/j.eswa.2008.11.052 CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Kar, S.: Multi-criteria analysis of supply chain risk management using interval valued fuzzy TOPSIS. OPSEARCH 53, 474–499 (2016).  https://doi.org/10.1007/s12597-015-0241-6 CrossRefGoogle Scholar
  9. 9.
    Sharma, M.J., Yu, S.J.: Selecting critical suppliers for supplier development to improve supply management. OPSEARCH 50, 42–59 (2013).  https://doi.org/10.1007/s12597-012-0097-y CrossRefGoogle Scholar
  10. 10.
    Hervani, A.A., Helms, M.M., Sarkis, J.: Performance measurement for green supply chain management. Benchmarking Int. J. 12, 330–353 (2005).  https://doi.org/10.1108/14635770510609015 CrossRefGoogle Scholar
  11. 11.
    Mathiyazhagan, K., Datta, U., Bhadauria, R., Singla, A., Krishnamoorthi, S.: Identification and prioritization of motivational factors for the green supply chain management adoption: case from Indian construction industries. OPSEARCH (2017).  https://doi.org/10.1007/s12597-017-0316-7 Google Scholar
  12. 12.
    Nikolaou, I.E., Evangelinos, K.I., Allan, S.: A reverse logistics social responsibility evaluation framework based on the triple bottom line approach. J. Clean. Prod. 56, 173–184 (2013).  https://doi.org/10.1016/j.jclepro.2011.12.009 CrossRefGoogle Scholar
  13. 13.
    Kafa, N., Hani, Y., Mhamedi, A.E.: An integrated sustainable partner selection approach with closed-loop supply chain network configuration. IFAC-Pap. 48, 1840–1845 (2015).  https://doi.org/10.1016/j.ifacol.2015.06.354 CrossRefGoogle Scholar
  14. 14.
    Tuzkaya, G., Ozgen, A., Ozgen, D., Tuzkaya, U.R.: Environmental performance evaluation of suppliers: a hybrid fuzzy multi-criteria decision approach. Int. J. Environ. Sci. Technol. 6, 477–490 (2009).  https://doi.org/10.1007/BF03326087 CrossRefGoogle Scholar
  15. 15.
    Mathiyazhagan, K., Sudhakar, S., Bhalotia, A.: Modeling the criteria for selection of suppliers towards green aspect: a case in Indian automobile industry. OPSEARCH (2017).  https://doi.org/10.1007/s12597-017-0315-8 Google Scholar
  16. 16.
    Chan, F.T.S., Kumar, N.: Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 35, 417–431 (2007).  https://doi.org/10.1016/j.omega.2005.08.004 CrossRefGoogle Scholar
  17. 17.
    Zouggari, A., Benyoucef, L.: Simulation based fuzzy TOPSIS approach for group multi-criteria supplier selection problem. Eng. Appl. Artif. Intell. 25, 507–519 (2012).  https://doi.org/10.1016/j.engappai.2011.10.012 CrossRefGoogle Scholar
  18. 18.
    Shaw, K., Shankar, R., Yadav, S.S., Thakur, L.S.: Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain. Expert Syst. Appl. 39, 8182–8192 (2012).  https://doi.org/10.1016/j.eswa.2012.01.149 CrossRefGoogle Scholar
  19. 19.
    Luthra, S., Govindan, K., Kannan, D., Mangla, S.K., Garg, C.P.: An integrated framework for sustainable supplier selection and evaluation in supply chains. J. Clean. Prod. 140, 1686–1698 (2017).  https://doi.org/10.1016/j.jclepro.2016.09.078 CrossRefGoogle Scholar
  20. 20.
    Kafa, N., Hani, Y., El Mhamedi, A.: Sustainable approach for third-party reverse logistics provider selection. Presented at the GSC’2014 International Conference on Green Supply Chain, Arras, France, 25 June 2014Google Scholar
  21. 21.
    Senthil, S., Srirangacharyulu, B., Ramesh, A.: A robust hybrid multi-criteria decision making methodology for contractor evaluation and selection in third-party reverse logistics. Expert Syst. Appl. 41, 50–58 (2014).  https://doi.org/10.1016/j.eswa.2013.07.010 CrossRefGoogle Scholar
  22. 22.
    Kannan, G., Murugesan, P.: Selection of third-party reverse logistics provider using fuzzy extent analysis. Benchmarking Int. J. 18, 149–167 (2011).  https://doi.org/10.1108/14635771111109869 CrossRefGoogle Scholar
  23. 23.
    Sasikumar, P., Haq, A.N.: Integration of closed loop distribution supply chain network and 3PRLP selection for the case of battery recycling. Int. J. Prod. Res. 49, 3363–3385 (2011).  https://doi.org/10.1080/00207541003794876 CrossRefGoogle Scholar
  24. 24.
    Kannan, G.: Fuzzy approach for the selection of third party reverse logistics provider. Asia Pac. J. Mark. Logist. 21, 397–416 (2009).  https://doi.org/10.1108/13555850910973865 CrossRefGoogle Scholar
  25. 25.
    Cheng, Y.-H., Lee, F.: Outsourcing reverse logistics of high-tech manufacturing firms by using a systematic decision-making approach: TFT-LCD sector in Taiwan. Ind. Mark. Manag. 39, 1111–1119 (2010).  https://doi.org/10.1016/j.indmarman.2009.10.004 CrossRefGoogle Scholar
  26. 26.
    Wang, J., Zhu, Y.: Research on third-party reverse logistics provider selection based on fuzzy clustering in perspective of low-carbon economy. Commun. Inf. Sci. Manag. Eng. 2, 63–66 (2011)Google Scholar
  27. 27.
    Zareinejad, M., Javanmard, H., Arak, I.: Evaluation and selection of a third-party reverse logistics provider using ANP and IFG-MCDM methodology. Life Sci. J. 10, 350–355 (2013)Google Scholar
  28. 28.
    Datta, S., Samantra, C., Sankar Mahapatra, S., Mandal, G., Majumdar, G.: Appraisement and selection of third party logistics service providers in fuzzy environment. Benchmarking Int. J. 20, 537–548 (2013).  https://doi.org/10.1108/BIJ-11-2011-0087 CrossRefGoogle Scholar
  29. 29.
    Tajik, G., Azadnia, A.H., Ma’aram, A.B., Hassan, S.A.H.S.: A hybrid fuzzy MCDM approach for sustainable third-party reverse logistics provider selection. Adv. Mater. Res. 845, 521–526 (2013).  https://doi.org/10.4028/www.scientific.net/AMR.845.521 CrossRefGoogle Scholar
  30. 30.
    Ravi, V., Shankar, R., Tiwari, M.K.: Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach. Comput. Ind. Eng. 48, 327–356 (2005).  https://doi.org/10.1016/j.cie.2005.01.017 CrossRefGoogle Scholar
  31. 31.
    Efendigil, T., Önüt, S., Kongar, E.: A holistic approach for selecting a third-party reverse logistics provider in the presence of vagueness. Comput. Ind. Eng. 54, 269–287 (2008).  https://doi.org/10.1016/j.cie.2007.07.009 CrossRefGoogle Scholar
  32. 32.
    Liu, C.-L., Lyons, A.C.: An analysis of third-party logistics performance and service provision. Transp. Res. Part E Logist. Transp. Rev. 47, 547–570 (2011).  https://doi.org/10.1016/j.tre.2010.11.012 CrossRefGoogle Scholar
  33. 33.
    Govindan, K., Palaniappan, M., Zhu, Q., Kannan, D.: Analysis of third party reverse logistics provider using interpretive structural modeling. Int. J. Prod. Econ. 140, 204–211 (2012).  https://doi.org/10.1016/j.ijpe.2012.01.043 CrossRefGoogle Scholar
  34. 34.
    Bai, C., Sarkis, J.: Flexibility in reverse logistics: a framework and evaluation approach. J. Clean. Prod. 47, 306–318 (2013).  https://doi.org/10.1016/j.jclepro.2013.01.005 CrossRefGoogle Scholar
  35. 35.
    Ha, S.H., Krishnan, R.: A hybrid approach to supplier selection for the maintenance of a competitive supply chain. Expert Syst. Appl. 34, 1303–1311 (2008).  https://doi.org/10.1016/j.eswa.2006.12.008 CrossRefGoogle Scholar
  36. 36.
    Ho, W., Xu, X., Dey, P.K.: Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202, 16–24 (2010).  https://doi.org/10.1016/j.ejor.2009.05.009 CrossRefGoogle Scholar
  37. 37.
    Chan, F.T.S., Chan, H.K.: An AHP model for selection of suppliers in the fast changing fashion market. Int. J. Adv. Manuf. Technol. 51, 1195–1207 (2010).  https://doi.org/10.1007/s00170-010-2683-6 CrossRefGoogle Scholar
  38. 38.
    Yeh, W.-C., Chuang, M.-C.: Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Syst. Appl. 38, 4244–4253 (2011).  https://doi.org/10.1016/j.eswa.2010.09.091 CrossRefGoogle Scholar
  39. 39.
    Amin, S.H., Zhang, G.: An integrated model for closed-loop supply chain configuration and supplier selection: multi-objective approach. Expert Syst. Appl. 39, 6782–6791 (2012).  https://doi.org/10.1016/j.eswa.2011.12.056 CrossRefGoogle Scholar
  40. 40.
    Kannan, D., Khodaverdi, R., Olfat, L., Jafarian, A., Diabat, A.: Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. J. Clean. Prod. 47, 355–367 (2013).  https://doi.org/10.1016/j.jclepro.2013.02.010 CrossRefGoogle Scholar
  41. 41.
    Jadidi, O., Zolfaghari, S., Cavalieri, S.: A new normalized goal programming model for multi-objective problems: a case of supplier selection and order allocation. Int. J. Prod. Econ. 148, 158–165 (2014).  https://doi.org/10.1016/j.ijpe.2013.10.005 CrossRefGoogle Scholar
  42. 42.
    You, X.-Y., You, J.-X., Liu, H.-C., Zhen, L.: Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information. Expert Syst. Appl. 42, 1906–1916 (2015).  https://doi.org/10.1016/j.eswa.2014.10.004 CrossRefGoogle Scholar
  43. 43.
    Govindan, K., Rajendran, S., Sarkis, J., Murugesan, P.: Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. J. Clean. Prod. 98, 66–83 (2015).  https://doi.org/10.1016/j.jclepro.2013.06.046 CrossRefGoogle Scholar
  44. 44.
    Taha, Z., Rostam, S.: A hybrid fuzzy AHP–PROMETHEE decision support system for machine tool selection in flexible manufacturing cell. J. Intell. Manuf. 23, 2137–2149 (2012).  https://doi.org/10.1007/s10845-011-0560-2 CrossRefGoogle Scholar
  45. 45.
    El Mokrini, A., Kafa, N., Dafaoui, E., El Mhamedi, A., Berrado, A.: Evaluating outsourcing risks in the pharmaceutical supply chain: case of a multi-criteria combined fuzzy AHP–PROMETHEE approach. IFAC-Pap. 49, 114–119 (2016).  https://doi.org/10.1016/j.ifacol.2016.11.020 CrossRefGoogle Scholar
  46. 46.
    Dağdeviren, M.: Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. J. Intell. Manuf. 19, 397–406 (2008).  https://doi.org/10.1007/s10845-008-0091-7 CrossRefGoogle Scholar
  47. 47.
    Patil, S.K., Kant, R.: A fuzzy AHP–TOPSIS framework for ranking the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Syst. Appl. 41, 679–693 (2014).  https://doi.org/10.1016/j.eswa.2013.07.093 CrossRefGoogle Scholar
  48. 48.
    Akdag, H., Kalaycı, T., Karagöz, S., Zülfikar, H., Giz, D.: The evaluation of hospital service quality by fuzzy MCDM. Appl. Soft Comput. 23, 239–248 (2014).  https://doi.org/10.1016/j.asoc.2014.06.033 CrossRefGoogle Scholar
  49. 49.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).  https://doi.org/10.1037/h0043158 CrossRefGoogle Scholar
  50. 50.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill Book Co, New York (1980)Google Scholar
  51. 51.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965).  https://doi.org/10.1016/S0019-9958(65)90241-X CrossRefGoogle Scholar
  52. 52.
    Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178, 2751–2779 (2008).  https://doi.org/10.1016/j.ins.2008.02.012 CrossRefGoogle Scholar
  53. 53.
    Zimmermann, H.-J.: Fuzzy Set Theory: And its Applications. Springer, Dordrecht (2001)CrossRefGoogle Scholar
  54. 54.
    Lee, A.R.: Application of modified fuzzy ahp method to analyze bolting sequence of structural joints. http://dl.acm.org/citation.cfm?id=922586 (1995)
  55. 55.
    Brans, J.-P.: L’ingénièrie de la décision; Elaboration d’instruments d’aide à la décision. La méthode PROMETHEE. Presented at the L’aide à la décision: Nature, Instruments et Perspectives d’Avenir, Québec, Canada (1982)Google Scholar
  56. 56.
    Brans, J.-P., Vincke, P.: A preference ranking organization method: the PROMETHEE method for MCDM. Manag. Sci. 31, 641–656 (1985)CrossRefGoogle Scholar
  57. 57.
    Hwang, C.-L., Yoon, K.: Multiple Attribute Decision Making. Springer, Berlin (1981)CrossRefGoogle Scholar
  58. 58.
    Velasquez, M., Velasquez, M., Hester, P.T.: An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10, 56–66 (2013)Google Scholar
  59. 59.
    Kou, G., Lu, Y., Peng, Y., Shi, Y.: Evaluation of classification algorithms using mcdm and rank correlation. Int. J. Inf. Technol. Decis. Mak. 11, 197–225 (2012).  https://doi.org/10.1142/S0219622012500095 CrossRefGoogle Scholar
  60. 60.
    Woodbury, G.: An Introduction to Statistics. Cengage Learning, Boston (2009)Google Scholar
  61. 61.
    Spearman, C.E.: The Proof and Measurement of Association Between Two Things. BiblioBazaar, Charleston (2015)Google Scholar
  62. 62.
    Chen, S.H., Hsieh, C.H.: Representation, ranking, distance, and similarity of L-R type fuzzy number and application. Aust. J. Intell. Process. Syst. 6, 217–229 (2000)Google Scholar
  63. 63.
    Prakash, C., Barua, M.K.: A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry. Sustain. Prod. Consum. 7, 66–78 (2016).  https://doi.org/10.1016/j.spc.2016.04.001 CrossRefGoogle Scholar

Copyright information

© Operational Research Society of India 2017

Authors and Affiliations

  • Nadine Kafa
    • 1
  • Yasmina Hani
    • 1
  • Abederrahman El Mhamedi
    • 1
  1. 1.QUARTZ EA 7393, IUT de MontreuilUniversité Paris 8MontreuilFrance

Personalised recommendations