Advertisement

OPSEARCH

, Volume 55, Issue 1, pp 165–186 | Cite as

\(\chi\)-Optimal solution of single objective nonlinear optimization problem with uncertain parameters

  • Mrinal Jana
  • Geetanjali Panda
Theoretical Article
  • 65 Downloads

Abstract

This paper addresses nonlinear optimization problem whose parameters are uncertain and lie in closed intervals. A partial ordering is introduced to define closeness between two intervals as well as two interval vectors. Existence of the solution of the model is studied using this partial ordering in case of unconstrained as well as constrained optimization problem. A variant of goal programming technique is used to develop a methodology to derive the solution. The methodology is illustrated through a numerical example. A possible application in finance is provided.

Keywords

Nonlinear programming Interval valued function Interval inequality Order relation Goal programming 

Mathematics Subject Classification

90C29 90C31 90C46 90C90 

Notes

Acknowledgements

The authors are greatly indebted to the anonymous referees for valuable comments and remarks aimed at the improvement of the manuscript.

References

  1. 1.
    Bhurjee, A., Panda, G.: Efficient solution of interval optimization problem. Math. Methods Oper. Res. 76, 273–288 (2012)CrossRefGoogle Scholar
  2. 2.
    Bitran, G.R.: Linear multiple objective problems with interval coefficients. Manag. Sci. 26(7), 694–706 (1980)CrossRefGoogle Scholar
  3. 3.
    Chanas, S., Kuchta, D.: Multiobjective programming in optimization of interval objective functions: a generalized approach. Eur. J. Oper. Res. 94(3), 594–598 (1996)CrossRefGoogle Scholar
  4. 4.
    Hansen, E., Walster, G.W.: Global optimization using interval analysis. Marcel Dekker Inc, New York (2004)Google Scholar
  5. 5.
    Hladík, M.: Optimal value range in interval linear programming. Fuzzy Optim. Decis. Making 8(3), 283–294 (2009)CrossRefGoogle Scholar
  6. 6.
    Hladík, M.: Optimal value bounds in nonlinear programming with interval data. Top 19(1), 93–106 (2011)CrossRefGoogle Scholar
  7. 7.
    Hu, B.Q., Wang, S.: A novel approach in uncertain programming part i: new arithmetic and order relation for interval numbers. J. Ind. Manag. Optim. 2(4), 351 (2006)CrossRefGoogle Scholar
  8. 8.
    Ishibuchi, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48(2), 219–225 (1990)CrossRefGoogle Scholar
  9. 9.
    Jana, M., Panda, G.: Solution of nonlinear interval vector optimization problem. Oper. Res. 14(1), 71–85 (2014)Google Scholar
  10. 10.
    Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218(8), 4119–4127 (2011)Google Scholar
  11. 11.
    Jiang, C., Han, X., Liu, G., Liu, G.: A nonlinear interval number programming method for uncertain optimization problems. Eur. J. Oper. Res. 188(1), 1–13 (2008)CrossRefGoogle Scholar
  12. 12.
    Liu, S.T.: Posynomial geometric programming with interval exponents and coefficients. Eur. J. Oper. Res. 186(1), 17–27 (2008)CrossRefGoogle Scholar
  13. 13.
    Liu, S.T., Wang, R.T.: A numerical solution method to interval quadratic programming. Appl. Math. Comput. 189(2), 1274–1281 (2007)Google Scholar
  14. 14.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. Soc. Ind. Math. (2009)Google Scholar
  15. 15.
    Shaocheng, T.: Interval number and fuzzy number linear programmings. Fuzzy Sets Syst. 66(3), 301–306 (1994)CrossRefGoogle Scholar
  16. 16.
    Urli, B., Nadeau, R.: An interactive method to multiobjective linear programming problems with interval coefficients. INFOR 30(2), 127–137 (1992)Google Scholar
  17. 17.
    Wu, H.C.: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338(1), 299–316 (2008)CrossRefGoogle Scholar

Copyright information

© Operational Research Society of India 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Petroleum and Energy StudiesDehradunIndia
  2. 2.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations