Skip to main content
Log in

Effect of cypermethrin on worker and soldier termites of subterranean termites Odontotermes brunneus (Hagen) (Termitidae: Isoptera)

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

The termite Odontotermes brunneus is an economically important species causing damage to cellulose containing wooden material and agricultural crops in India. Insecticide application is an effective strategy in termite control. In the present study the effect of cypermethrin was tested for workers and soldiers termite using filter paper dip method. After 24 h treatment the lethal concentration (LC50) was increased to 9.7 ppm in workers and 1.8 ppm in soldiers respectively. The detoxification enzyme activities of esterase, glutathione S-transferase was increased in worker termites 23 µmol, 9 µmol/min/mg of protein compared to soldiers 15 µmol, 7 µmol/min/mg of protein respectively (p < 0.05). The activity of mixed-function oxidase was found very less in both samples. Further nPAGE analysis revealed that increased esterase band in workers than soldier and control sample. The data of this study revealed that possible mechanism of esterase and glutathione S-transferase mediated cypermethrin detoxification that leads to reduce the sensitivity in worker termites of O. brunneus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.

    Article  CAS  Google Scholar 

  • Ahmad, M., A.H. Sayyed, N.A. Crickmore, and M.A. Saleem. 2007. Genetics and mechanism of resistance to deltamethrin in laboratory strains of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science 63: 1002–1010.

    Article  CAS  Google Scholar 

  • Ahmed, S., and M. Qasim. 2011. Foraging and chemical control of subterranean termites in a farm building at Faisalabad, Pakistan. Pakistan Journal of Life Science 9: 58–62.

    Google Scholar 

  • Brogdon, W.G. 1989. Biochemical resistance detection: An alternative to bioassay. Parasitology Today 5: 56–60.

    Article  CAS  Google Scholar 

  • Butler, D. 2011. Mosquitoes score in chemical war. Nature 475: 19–20.

    Article  CAS  Google Scholar 

  • Chottani, O.B. 1997. Fauna of India–isopera (termites), vol. 2, pp. xx + 801 (Published Director. ZSI. Calcutta).

  • Dauterman, W.C. 1985. Insect metabolism : Extra microsomal. In Comprehensive insect philology, biochemistry and pharmacology, vol. 12, ed. G.A. Kerkut and L.I. Gilbert, 713–730., Pergamon UK: Oxford.

    Google Scholar 

  • Enayati, A.A., H. Ranson, and J. Hemingway. 2005. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14: 3–8.

    Article  CAS  Google Scholar 

  • Fragoso, D.B., R.N.C. Guedesa, and M.G.A. Oliveira. 2007. Partial characterization of glutathione S-transferases in pyrethroid resistant and susceptible populations of the maize weevil, Sitophilus zeamais. Journal of Stored Products Research 43: 167–170.

    Article  CAS  Google Scholar 

  • Gunning, R.V., C.S. Easton, M.E. Balfe, and I.G., Ferris. 1991. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pesticide Science 33: 473–490

    Article  CAS  Google Scholar 

  • Hussain, M.A., 1935. Pest of wheat crop in India. In Proceedings of 2nd world grain exhibition and conference, pp. 562–564.

  • Ishaaya, I. 1993. Insect detoxifying enzymes: Their importance in pesticide synergism and resistance. Archives of Insect Biochemistry and Physiology 22: 263–276.

    Article  CAS  Google Scholar 

  • Kranthi, K.R. 2005. Insecticides resistance—Monitoring, mechanisms and management manual. Nagpur: CICR.

    Google Scholar 

  • Krishna, K., and P.M. Weesner. 1970. In Biology of termites, vol. 2, ed. K. Krishna and F.M. Weesner, 643. New York: Academic Press.

    Google Scholar 

  • Kuriachan, I., and R.E. Gold. 1998. Evaluation of the ability of Reticulitermes flavipus Kollar, a subterranean termite (Isoptera: Rhinotermitidae) to differentiate between termiticid treated and untreated soils in laboratory tests. Sociobiology 32: 151–166.

    Google Scholar 

  • Lee, S.E. 2002. Biochemical mechanisms conferring cross-resistance to fumigant toxicities of essential oils in a chlorpyrifos-methyl resistant strain of Oryzaephilus surinamensis L. (Coleoptera: Silvanidae). Journal of Stored Product Research 38 (2): 157–166.

    Article  CAS  Google Scholar 

  • Liu, N. 2015. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annual Review of Entomology 60: 537–559

    Article  CAS  Google Scholar 

  • Lowry, O.H., N.J. Rosenbrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folins phenol reagent. Journal of Biological Chemistry 193: 265–275.

    CAS  Google Scholar 

  • Matsumura, F. 1985. Toxicology of Insecticides, 2nd ed. New York: Plenum.

    Book  Google Scholar 

  • Muthusamy, R., and M.S. Shivakumar. 2015a. Involvement of metabolic resistance and F1534C kdr mutation in the pyrethroid resistance mechanisms of Aedes aegypti in India. Acta Tropica 148: 137–141.

    Article  CAS  Google Scholar 

  • Muthusamy, R., and M.S. Shivakumar. 2015b. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga walker). Pesticide Biochemistry and Physiology 117: 54–61.

    Article  CAS  Google Scholar 

  • Muthusamy, R., R. Suganya, M. Gowri, and M.S. Shivakumar. 2013. Biochemical mechanisms of organophosphate and pyrethroid resistance in red hairy caterpillar Amsacta albistriga (Lepidoptera: Arctiidae). Journal of Saudi Society of Agricultural Science 12: 47–52.

    Article  Google Scholar 

  • Muthusamy, R., M. Vishnupriya, and M.S. Shivakumar. 2014. Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology 17: 865–869.

    Article  CAS  Google Scholar 

  • Osbrink, W.A., A.R. Lax, and R.J. Brenner. 2001. Insecticide susceptibility in Coptotermes formosanus and Reticulitermes virginicus (Isoptera: Rhinotermitidae). Journal of Economic Entomology 94: 1217–1228.

    Article  CAS  Google Scholar 

  • Osbrink, W.L.A., and A.R. Lax. 2003. Putative resistance to insecticides in the Formosan Subterranean termite an-overview. Sociobiology 41 (1): 143–152.

    Google Scholar 

  • Patel, G.A., and H.K. Patel. 1954. Seasonal incidence of termite injury in the northern parts of the Bombay State. Indian Journal of Entomology 15 (4): 376–378.

    Google Scholar 

  • Pearce, M.J. 1997. Termites biology and pest management, 172. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rajagopal, D. 2002. Economically important termite species in India. Sociobiology 40 (1): 33–46.

    Google Scholar 

  • Ribeiro, B.M., R.N.C. Guedes, E.E. Oliveira, and J. Santos. 2003. Insecticide resistance and synergism in Brazilian populations of Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Product Research 39 (1): 21–31.

    Article  CAS  Google Scholar 

  • Sattar, A., and Z. Salihah, 2001. Detection and control of subterranean termites. In ed. Technologies for Sustainable Agriculture, Proceedings of national workshop. September 24–26, NIAB, Faisalabad, Pakistan (pp. 195–98).

  • Scott, J.G. 2001. Cytochrome P450 monooxygenases and insecticide resistance: lessons from CYP6D1. In ed. Ishaaya, I., Biochemical sites of insecticide action and resistance. Springer-Verlag, Berlin, Germany (pp. 255–267).

    Chapter  Google Scholar 

  • Scheffrahn, R.H., N.Y. Su, and P. Busey. 1997. Laboratory and field evaluation of selected chemical treatment and field evaluation of selected chemical treatment for control of dry wood termites (Isopteran: Kalotermitidae). Journal of Economic Entomology 90: 492–502.

    Article  CAS  Google Scholar 

  • Smeathman, H. 1781. Some account of termites which are found in Africa and other hot climates. Philosophical Transactions of the Royal Society of London 71: 139–192.

    Article  Google Scholar 

  • Srinivas, R., S.S. Udikeri, S.K. Jayalakshimi, and K. Sreeramula. 2004. Identification of factors responsible for insecticide resistance in Helocoverpa armigera. Comparative Biochemistry and Physiology C 137: 169–261.

    Article  Google Scholar 

  • Strange, R.C., M.A. Spiteri, S.S. Ramachandran, and A.A. Fryer. 2001. Glutathione S-transferase family of enzymes. Mutation Research 482: 21–26.

    Article  CAS  Google Scholar 

  • Su, J., T. Lai, and J. Li. 2012. Susceptibility of field populations of Spodoptera litura (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Protection 42: 217–222.

    Article  CAS  Google Scholar 

  • Taskin, V., K. Ucukakyuz, T. Arslan, B. Col, and B.G. Taskin. 2007. The biochemical basis of insecticides resistance and determination of esterase enzyme patterns by using PAGE in laboratory collected strains of Drosophila melanogaster from Mulla province of turkey. Journal of Cell and Molecular Biology 6 (1): 31–40.

    Google Scholar 

  • Zaim, M., and P. Guillet. 2002. Alternative insecticides: An urgent need. Trends in Parasitology 18: 161–163.

    Article  Google Scholar 

Download references

Acknowledgements

We thank our department of PG and Research Centre in Biotechnology for providing infrastructure facility to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranganathan Muthusamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamatha, V., Muthusamy, R., Murugan, J.M. et al. Effect of cypermethrin on worker and soldier termites of subterranean termites Odontotermes brunneus (Hagen) (Termitidae: Isoptera). Proc Zool Soc 73, 40–45 (2020). https://doi.org/10.1007/s12595-018-0284-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-018-0284-9

Keywords

Navigation