Effect of cypermethrin on worker and soldier termites of subterranean termites Odontotermes brunneus (Hagen) (Termitidae: Isoptera)

Abstract

The termite Odontotermes brunneus is an economically important species causing damage to cellulose containing wooden material and agricultural crops in India. Insecticide application is an effective strategy in termite control. In the present study the effect of cypermethrin was tested for workers and soldiers termite using filter paper dip method. After 24 h treatment the lethal concentration (LC50) was increased to 9.7 ppm in workers and 1.8 ppm in soldiers respectively. The detoxification enzyme activities of esterase, glutathione S-transferase was increased in worker termites 23 µmol, 9 µmol/min/mg of protein compared to soldiers 15 µmol, 7 µmol/min/mg of protein respectively (p < 0.05). The activity of mixed-function oxidase was found very less in both samples. Further nPAGE analysis revealed that increased esterase band in workers than soldier and control sample. The data of this study revealed that possible mechanism of esterase and glutathione S-transferase mediated cypermethrin detoxification that leads to reduce the sensitivity in worker termites of O. brunneus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.

    CAS  Article  Google Scholar 

  2. Ahmad, M., A.H. Sayyed, N.A. Crickmore, and M.A. Saleem. 2007. Genetics and mechanism of resistance to deltamethrin in laboratory strains of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science 63: 1002–1010.

    CAS  Article  Google Scholar 

  3. Ahmed, S., and M. Qasim. 2011. Foraging and chemical control of subterranean termites in a farm building at Faisalabad, Pakistan. Pakistan Journal of Life Science 9: 58–62.

    Google Scholar 

  4. Brogdon, W.G. 1989. Biochemical resistance detection: An alternative to bioassay. Parasitology Today 5: 56–60.

    CAS  Article  Google Scholar 

  5. Butler, D. 2011. Mosquitoes score in chemical war. Nature 475: 19–20.

    CAS  Article  Google Scholar 

  6. Chottani, O.B. 1997. Fauna of India–isopera (termites), vol. 2, pp. xx + 801 (Published Director. ZSI. Calcutta).

  7. Dauterman, W.C. 1985. Insect metabolism : Extra microsomal. In Comprehensive insect philology, biochemistry and pharmacology, vol. 12, ed. G.A. Kerkut and L.I. Gilbert, 713–730., Pergamon UK: Oxford.

    Google Scholar 

  8. Enayati, A.A., H. Ranson, and J. Hemingway. 2005. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14: 3–8.

    CAS  Article  Google Scholar 

  9. Fragoso, D.B., R.N.C. Guedesa, and M.G.A. Oliveira. 2007. Partial characterization of glutathione S-transferases in pyrethroid resistant and susceptible populations of the maize weevil, Sitophilus zeamais. Journal of Stored Products Research 43: 167–170.

    CAS  Article  Google Scholar 

  10. Gunning, R.V., C.S. Easton, M.E. Balfe, and I.G., Ferris. 1991. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pesticide Science 33: 473–490

    CAS  Article  Google Scholar 

  11. Hussain, M.A., 1935. Pest of wheat crop in India. In Proceedings of 2nd world grain exhibition and conference, pp. 562–564.

  12. Ishaaya, I. 1993. Insect detoxifying enzymes: Their importance in pesticide synergism and resistance. Archives of Insect Biochemistry and Physiology 22: 263–276.

    CAS  Article  Google Scholar 

  13. Kranthi, K.R. 2005. Insecticides resistance—Monitoring, mechanisms and management manual. Nagpur: CICR.

    Google Scholar 

  14. Krishna, K., and P.M. Weesner. 1970. In Biology of termites, vol. 2, ed. K. Krishna and F.M. Weesner, 643. New York: Academic Press.

    Google Scholar 

  15. Kuriachan, I., and R.E. Gold. 1998. Evaluation of the ability of Reticulitermes flavipus Kollar, a subterranean termite (Isoptera: Rhinotermitidae) to differentiate between termiticid treated and untreated soils in laboratory tests. Sociobiology 32: 151–166.

    Google Scholar 

  16. Lee, S.E. 2002. Biochemical mechanisms conferring cross-resistance to fumigant toxicities of essential oils in a chlorpyrifos-methyl resistant strain of Oryzaephilus surinamensis L. (Coleoptera: Silvanidae). Journal of Stored Product Research 38 (2): 157–166.

    CAS  Article  Google Scholar 

  17. Liu, N. 2015. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annual Review of Entomology 60: 537–559

    CAS  Article  Google Scholar 

  18. Lowry, O.H., N.J. Rosenbrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folins phenol reagent. Journal of Biological Chemistry 193: 265–275.

    CAS  Google Scholar 

  19. Matsumura, F. 1985. Toxicology of Insecticides, 2nd ed. New York: Plenum.

    Google Scholar 

  20. Muthusamy, R., and M.S. Shivakumar. 2015a. Involvement of metabolic resistance and F1534C kdr mutation in the pyrethroid resistance mechanisms of Aedes aegypti in India. Acta Tropica 148: 137–141.

    CAS  Article  Google Scholar 

  21. Muthusamy, R., and M.S. Shivakumar. 2015b. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga walker). Pesticide Biochemistry and Physiology 117: 54–61.

    CAS  Article  Google Scholar 

  22. Muthusamy, R., R. Suganya, M. Gowri, and M.S. Shivakumar. 2013. Biochemical mechanisms of organophosphate and pyrethroid resistance in red hairy caterpillar Amsacta albistriga (Lepidoptera: Arctiidae). Journal of Saudi Society of Agricultural Science 12: 47–52.

    Article  Google Scholar 

  23. Muthusamy, R., M. Vishnupriya, and M.S. Shivakumar. 2014. Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology 17: 865–869.

    CAS  Article  Google Scholar 

  24. Osbrink, W.A., A.R. Lax, and R.J. Brenner. 2001. Insecticide susceptibility in Coptotermes formosanus and Reticulitermes virginicus (Isoptera: Rhinotermitidae). Journal of Economic Entomology 94: 1217–1228.

    CAS  Article  Google Scholar 

  25. Osbrink, W.L.A., and A.R. Lax. 2003. Putative resistance to insecticides in the Formosan Subterranean termite an-overview. Sociobiology 41 (1): 143–152.

    Google Scholar 

  26. Patel, G.A., and H.K. Patel. 1954. Seasonal incidence of termite injury in the northern parts of the Bombay State. Indian Journal of Entomology 15 (4): 376–378.

    Google Scholar 

  27. Pearce, M.J. 1997. Termites biology and pest management, 172. Cambridge: Cambridge University Press.

    Google Scholar 

  28. Rajagopal, D. 2002. Economically important termite species in India. Sociobiology 40 (1): 33–46.

    Google Scholar 

  29. Ribeiro, B.M., R.N.C. Guedes, E.E. Oliveira, and J. Santos. 2003. Insecticide resistance and synergism in Brazilian populations of Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Product Research 39 (1): 21–31.

    CAS  Article  Google Scholar 

  30. Sattar, A., and Z. Salihah, 2001. Detection and control of subterranean termites. In ed. Technologies for Sustainable Agriculture, Proceedings of national workshop. September 24–26, NIAB, Faisalabad, Pakistan (pp. 195–98).

  31. Scott, J.G. 2001. Cytochrome P450 monooxygenases and insecticide resistance: lessons from CYP6D1. In ed. Ishaaya, I., Biochemical sites of insecticide action and resistance. Springer-Verlag, Berlin, Germany (pp. 255–267).

    Google Scholar 

  32. Scheffrahn, R.H., N.Y. Su, and P. Busey. 1997. Laboratory and field evaluation of selected chemical treatment and field evaluation of selected chemical treatment for control of dry wood termites (Isopteran: Kalotermitidae). Journal of Economic Entomology 90: 492–502.

    CAS  Article  Google Scholar 

  33. Smeathman, H. 1781. Some account of termites which are found in Africa and other hot climates. Philosophical Transactions of the Royal Society of London 71: 139–192.

    Article  Google Scholar 

  34. Srinivas, R., S.S. Udikeri, S.K. Jayalakshimi, and K. Sreeramula. 2004. Identification of factors responsible for insecticide resistance in Helocoverpa armigera. Comparative Biochemistry and Physiology C 137: 169–261.

    Article  Google Scholar 

  35. Strange, R.C., M.A. Spiteri, S.S. Ramachandran, and A.A. Fryer. 2001. Glutathione S-transferase family of enzymes. Mutation Research 482: 21–26.

    CAS  Article  Google Scholar 

  36. Su, J., T. Lai, and J. Li. 2012. Susceptibility of field populations of Spodoptera litura (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Protection 42: 217–222.

    CAS  Article  Google Scholar 

  37. Taskin, V., K. Ucukakyuz, T. Arslan, B. Col, and B.G. Taskin. 2007. The biochemical basis of insecticides resistance and determination of esterase enzyme patterns by using PAGE in laboratory collected strains of Drosophila melanogaster from Mulla province of turkey. Journal of Cell and Molecular Biology 6 (1): 31–40.

    Google Scholar 

  38. Zaim, M., and P. Guillet. 2002. Alternative insecticides: An urgent need. Trends in Parasitology 18: 161–163.

    Article  Google Scholar 

Download references

Acknowledgements

We thank our department of PG and Research Centre in Biotechnology for providing infrastructure facility to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranganathan Muthusamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mamatha, V., Muthusamy, R., Murugan, J.M. et al. Effect of cypermethrin on worker and soldier termites of subterranean termites Odontotermes brunneus (Hagen) (Termitidae: Isoptera). Proc Zool Soc 73, 40–45 (2020). https://doi.org/10.1007/s12595-018-0284-9

Download citation

Keywords

  • Terrestrial insect
  • Synthetic pyrethriod
  • Toxicity
  • Detoxification enzymes
  • Electrophoresis