Proceedings of the Zoological Society

, Volume 71, Issue 1, pp 30–47 | Cite as

Noise Induces Hypothyroidism and Gonadal Dysfunction Via Stimulation of Pineal–Adrenal Axis in Chicks

  • Prajna Paramita Ray
  • Tania Chatterjee
  • Sraboni Roy
  • Suvojit Rakshit
  • Madhumita Bhowmik
  • Jaysree Guha
  • Aniruddha Maity
  • Indraneel Saha
  • Ankur Bhowal
  • Aniruddha Chatterjee
  • Supriti Sarkar
  • Debabrata Nag
  • B. R. Maiti
Research Article


Noise is a world-wide problem that causes nervous, endocrine and cardiovascular disorders, and eventually health hazards in humans and animals. Objective of the current work is to investigate endocrine interaction in noise stress, which subsequently affects other endocrine functions including gonads in a poultry bird like chicks. Gravimetric, ultrastructural and hormonal status of the endocrine organs were examined to ascertain the effects of noise stress. Acute noise at 60 dB had no effect, but at 80 and 100 dB each for 3 h, increased pineal and serum serotonin, and adrenal and serum corticosterone, epinephrine and norepinephrine concentrations, without any change in thyroid or gonadal hormones. Chronic noise exposure at 60, 80 and 100 dB each for 6 h, daily for 7 days, drastically disturbed normal behavior, and quantum of food consumption and water intake. Chronic exposure also significantly decreased body weight including thyroid, ovary and testis weight, and increased adrenal weight. Noise stress caused ultrastructural changes leading to stimulations of pinealocytes (with abundance of rough endoplasmic reticulum and mitochondria), adrenocortical cells (enlarged nuclei and abundance of smooth endoplasmic reticulum) and adrenomedullary cells (enlarged nuclei with presence of chromaffin granules) were observed in noise stress. Additionally, pineal and serum serotonin, N-acetyl serotonin and melatonin, and adrenal and serum corticosterone, epinephrine and norepinephrine levels were significantly elevated following chronic noise exposure. Contrarily, thyroid activity was suppressed with atrophied thyroid follicles followed by declined levels of serum T3 and T4 with elevation of TSH level. Simultaneously, serum 17β-estradiol (E2) and testosterone (T) concentrations were also significantly declined in all the doses of chronic noise. These changes were dose dependent of noise exposure. The findings suggest that (a) adrenal and pineal glands respond primarily to noise and secondarily act on other endocrine organs including gonads in chicks, (b) adrenal directly and/or indirectly causes thyroid and gonadal dysfunctions via pineal following noise exposure in chicks.


Noise Chick Pineal Thyroid Adrenal Gonads 



This work was supported by a Grant (No. F.PSW-030/03-04) from the University Grants Commission, Government of India, awarded to P.P. Ray.


  1. Abadie, R., J.P. Bernadat and Le Bruit. 2008. Sources de stress. Acteralite Δ45. Bruit-source-de-stress (Last cited 2008 Jan 01).
  2. Bedanova, I., P. Chloupek, P. Vosmerova, J. Chloupek, and V. Vecerek. 2010. Time course charges in selected biochemical stress indices in broilers exposed to short-term noise. Journal of the University of Veternary and Pharmaceutical Sciences in Brno, Czech Republic 79: 35–40.Google Scholar
  3. Blulim, G., and C. Eriksson. 2001. Cardiovascular effects of environmental noise: Research in Sweden. Noise Health 13(52): 212–216.Google Scholar
  4. Chakrabarty, S., S. Chattapadhya, A. Sarkar, and R. Bandtopadhya. 1992. Melatonin induced morphology of the thyrofollicular activity in blossom-heated parakeets (Psittacula cyanocephala) and Indian weaver birds (Ploceus philippinus). European Archeries of Biology 103: 245–249.Google Scholar
  5. Chaudhuri, S., and B.R. Maiti. 1989. Pineal activity during the seasonal gonadal cycle in a wild avian species, the Tree pie (Dendrocitta vagubunda). General and Comparative Endocrinology 76: 346–349.CrossRefPubMedGoogle Scholar
  6. Chen, A., J.J. Bookstern, and D.R. Meldrum. 1991. Diagnosis of a testosterone-secreting adrenal adenoma by selective various catherisation. Fertility and Sterility 55: 1202–1203.CrossRefPubMedGoogle Scholar
  7. Chester Jones, I., and I.W. Henderson. 1978. Gen. compa. clini endocrinol adrenal cortex. London: Academic Press.Google Scholar
  8. Chloupek, P., E. Vostarova, J. Chloupek, I. Bedanova, V. Pistekova, and V. Vecerek. 2009. Stress in broiler chickens due to acute noise exposure. Journal of the University of Veternary and Pharmaceutical Sciences in Brno, Czech Republic 78: 93–98.Google Scholar
  9. Compaqnucci, C.V., G.E. Compaqnucci, A. Lomniczi, C. Mohn, I. Vacas, E. Cebral, J.C. Elverdin, S.M. Friedman, V. Rettori, and P.M. Boyer. 2002. Effect of nutritional stress on the hypothalamo-pituitary-gonadal axis in growing male rat. NeuroImmunoModulation 10: 153–162.CrossRefGoogle Scholar
  10. Cox Jr., R.H., and J.L. Perhach Jr. 1973. A sensitive rapid and simple method for simultaneous spectrophotofluorometric determinations of norepinephrine, dopamine, 5-hydroxytryptamine and 5-hydroxy indole acetic acid in discrete areas of brain. Journal of Neurochemistry 20: 1777–1780.CrossRefPubMedGoogle Scholar
  11. Dagnino-Subiabre, A., J.A. Orellana, C. Carmona-Fontaine, J. Montiel, G. Díaz-Velíz, M. Serón-Ferré, U. Wyneken, M.L. Concha, and F. Abitiz. 2006. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats. Journal of Neurochemistry 97: 1279–1287.CrossRefPubMedGoogle Scholar
  12. Dang, W.M., S. Wang, S.X. Tian, B. Chen, F. Sun, W. Li, Y. Jiao, and L.H. He. 2007. Effect of infrasound on activities of 3beta hydroxysteroid dehydrogenase and acid phosphatase of polygonal cells in adrenal cortex zona fasciculate in mice. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 25: 91–95.PubMedGoogle Scholar
  13. Darras, V.M., R. Hume, and T.J. Visser. 1999. Regulation of thyroid hormone metabolism during fetal development. Molecular and Cellular Endocrinology 151(1–2): 37–47.CrossRefPubMedGoogle Scholar
  14. Das, P., A. Pramanick, A. Maity, and B.R. Maiti. 2013. The role of some extra-gonadal hormones on the circannual ovarian cycle of the flat head grey mullet, Mugil cephalus L. Biological Rhythm Research 44: 830–843.CrossRefGoogle Scholar
  15. Dasgupta, R. 2008. Effects of arecoline on thyroid and adrenal glands and host’s intrinsic defense system in albino mice. Ph.D. thesis, University of Calcutta.Google Scholar
  16. Dasgupta, R., D. Pradhan, S. Sengupta, T. Nag, and B.R. Maiti. 2010. Ultrastructual and hormonal modulations of adrenal gland with alterations of glycemic and liver glycogen profiles following arecoline administration in albino mice. Acta Endocrinologica 4: 413–430.Google Scholar
  17. De Groot, L.J., and J.L. Jameson. 2001. Endocrinology (chapter 175), vol. 1, 4th ed. Philadelphia: W.B. Saunders Company.Google Scholar
  18. Duleba, A.J., N. Foyouzi, M. Karaka, T. Pehlivan, K.J. Kurnth, and H.R. Behrnran. 2004. Proliferation of ovarian theca interstitial cells is modulated by antioxidant and oxidative stress. Human Reproduction 19: 1519–1524.CrossRefPubMedGoogle Scholar
  19. Francis, C.D., C.P. Ortaga, and A. Cruz. 2009. Noise pollution changes avian communities and species interactions. Current Biology 19: 1415–1419.CrossRefPubMedGoogle Scholar
  20. Gannouni, N., A. Mhamdi, O. Tebourbi, M. El May, M. Sakly, and K.B. Rhouma. 2013. Qualitative and quantitative assessment of noise at moderate intensities on extra-auditory systm in adult rats. Noise Health 15: 406–411.CrossRefPubMedGoogle Scholar
  21. Gesi, M., F. Fornai, P. Lenzi, G. Natale, P. Soldani, and A. Paparelli. 2001. Time-dependent changes in adrenal cortex ultrastructure and corticosterone levels after noise exposure in male rats. European Journal of Morphology 39: 124–135.CrossRefGoogle Scholar
  22. Ghosh, A., S.W. Carmicael, and M. Mukherjee. 2011. Avian adrenal medulla: Cytomorphology and function. Acta Biologica Szegediensis 45: 1–11.Google Scholar
  23. Glick, D., V.R. Doro, and S. Lavine. 1964. Fluorometric determination of corticosterone and cortisol in 0.02–0.005 milliliters or subonitigram samples of adrenal tissue. Endocrinology 74: 653–655.CrossRefPubMedGoogle Scholar
  24. Haldar, C., and S.S. Shavali. 1992. Influence of melatonin on thyroxine release from thyroid glands of female Funambulus pennant; an in vitro study. Neuroendocrinology Letter 14: 411–416.Google Scholar
  25. Hardy, M.P., and V.K. Gunjam. 1997. Stress, 1 beta-HSD and Leydig cell function. Andrology 18: 475–479.Google Scholar
  26. Helmreich, D.L., D.B. Parfitt, X.Y. Lu, H. Akil, and S.J. Watson. 2005. Relation between the hypothalamic-pituitary-thyroid (HPT) axis and the hypothalamic-pituitary-adrenal axis during repeated stress. Neuroendocrinology 81: 183–192.CrossRefPubMedGoogle Scholar
  27. Kemper, A., W. Wildanhahn, and L. Lyhs. 1976. Effect of long lasting noise on the plasma concentration of catecholamines, glucocorticoids and PBI in pigs. Archives of Experimental Veterinarymedicine 30: 619–625.Google Scholar
  28. Kuhn, E.R., K.L. Geris, S.V. Geyten, K.A. Mol, and V.M. Darras. 1998. Inhibition and activation of the thyroidal axis by the adrenal axis in vertebrates. Comparative Biochemistry and Physiology Part A: Molecular Integrated Physiology 120(1): 169–174.CrossRefGoogle Scholar
  29. Kumar, P.N., M.M. Aruldhas, and S.C. Juneja. 1996. Influence of hyperthyroidism induced at puberty on the epididymal lipids, number and motility of spermatozoa in rats. Reproductive Fertility Development 8: 373–378.CrossRefGoogle Scholar
  30. Lang, T., C. Fouriaud, and M.C. Jacquinet-Salord. 1992. Length of occupational noise exposure and blood pressure. International Achieves of Occupational and Environmental Health 63: 369–372.CrossRefGoogle Scholar
  31. Larsen, P.R., T.F. Davis, M.J. Schlumberger, and I.D. Jay. 2003. Thyroid physiology and diagnostic evaluation of patients with thyroid disorders. In William’s text book of endocrinology, 10th ed, ed. P.R. Larsen, H.M. Kronenberg, S. Melmeds, and K.S. Polonsky, 331–372. Philadelphia: W.B. Saunders Co.Google Scholar
  32. Laverty, R., and K.M. Taylor. 1968. The fluorometric assay of catecholamines and related compounds; improvement and extensions to the hydroxy indole technique. Analytical Biochemistry 23: 269–279.CrossRefGoogle Scholar
  33. Leswinski, A. 2005. Melatonin and the thyroid gland. In Melatonin: Biological basis of its function in health and disease, ed. R. Pandi-Perumal, and D. Cardinali. Austin: Eurekah.Com.Google Scholar
  34. Lewinski, A., E. Wajs, M. Klencki, A. Karbownik, E. Gesing, D. Sewerynek, E. Slowińska-Klencka, P. Skowrońska-Jóźwiak, and Biliński M. Klencki. 1997. Pineal-thyroid interrelationship. In Molecular mechanisms to clinical implication, ed. S.M. Webb, M. Puig-Domingo, M. Moller, and P. Pevet, 173–181. Westbury, New York: PJD Ltd.Google Scholar
  35. Madhu, N.R., and C.K. Manna. 2011. Pineal-adrenocortical interactions in domestic male pigeon exposed to long and short photoperiods and exogenous testosterone propionate. Biological Rhythm Research 42(4): 349–362.CrossRefGoogle Scholar
  36. Mahapatra, M.S., S.K. Mahata, and B.R. Maiti. 1987. Influence of age on diurnal rhythms of adrenal norepinephrine, epinephrine and corticosterone levels in soft-shelled turtles (Lissemys punctata punctata). General and Comparative Endocrinology 67: 279–281.CrossRefPubMedGoogle Scholar
  37. Melmed, S., K.S. Polonsky, P.R. Larsen, and H.M. Kronenberg. 2011. Williams text book of endocrinology, 12th ed, 1897. Elsevier: Saunders.Google Scholar
  38. Miller, F.P., and R.P. Maickel. 1970. Fluorometric determination of indole derivatives. Life Science 19: 747.CrossRefGoogle Scholar
  39. Nakao, N., H. Ono, and T. Yoshimuvu. 2000. Throid hormones and seasonal reproductive neuroendocrine interactions. Society of Reproductive Fertility 1626: 1470–1626.Google Scholar
  40. Norris, D.O., and J.A. Carr. 2013. Vertebrate endocrinology, 13th ed. London: Academic Press.Google Scholar
  41. O’connor, E.A., M.O. Parker, E.L. Davey, H. Grist, R.C. Owen, B. Szladovits, T.G.M. Demmers, C.M. Wathes, and S.M. Wathes Abey-Singka. 2011. Effect of low light and high noise of behavioural activity physiological indicators on stress and production in laying hens. British Poultry Science 52(6): 666–679.CrossRefPubMedGoogle Scholar
  42. Orr, T.E., and D.R. Mann. 1992. Role of glucocorticoids in the stress induced suppression of testicular steroidogenesis in adult male rats. Hormone and Behaviour 26(3): 350–363.CrossRefGoogle Scholar
  43. Pereira, A.M.F., F. Baccani Jr., E.A. Titto, and J.A. Almeida. 2008. Effect of thermal stress on physiological parameters, feed intake and plasma thyroid hormones concentration in Alentejana, Mettolenga, Frisian and Limousine cattle breeds. International journal of Biometerlogy 52(3): 199–208.CrossRefGoogle Scholar
  44. Petterborg, L.J., and P.K. Rudeen. 1989. Effects of daily afternoon melatonin administration on body weight and thyroid hormones in female hamsters. Journal of Pineal Research 6: 367–373.CrossRefPubMedGoogle Scholar
  45. Prasadan, T.N., and V.C. Kotak. 1993. Fine structure of the free living parakeet pineal in relation to the breeding cycle. Journal of Pineal Research 15: 122–136.CrossRefPubMedGoogle Scholar
  46. Prusik, M., B. Lewczuk, M. Nowicki, and B. Przybylska-Gornowicz. 2006. Histology and ultrastructure of the pineal organ in the domestic goose. Histology and Histopathology 21: 1075–1090.PubMedGoogle Scholar
  47. Raff, H., E.D. Bruder, W.E. Cullinan, D.R. Zeigler, and E.P. Cohen. 2011. Effect of animal facility construction on basal hypothalamic-pituitary-adrenal and rennin-aldosterone activity in the rat. Endocrinology 152(4): 1218–1224.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ratcliffe, W.A., G.D. Carter, M. Dowsett, S.G. Hillier, J.G. Middle, and M.J. Reed. 1988. Estradiol assays: Applications and guidelines for the provision of clinical biochemistry service. Annals of Clinical Biochemistry 25: 466–483.CrossRefPubMedGoogle Scholar
  49. Ray, P.P., and B.R. Maiti. 2001. Adrenomedullary hormonal and glycemic responses to high ambient temperature in the soft-shelled turtle, Lissemys punctata punctata. General and Comparative Endocrinology 122: 17–22.CrossRefPubMedGoogle Scholar
  50. Ray, P.P., and B.R. Maiti. 2003. Interrenal responses to high ambient temperature in soft-shelled turtle, Lissemys punctata punctata. Indian Journal of Experimental Biology. 41: 880–884.PubMedGoogle Scholar
  51. Saha I. 2010. Effect of arecoline on pineal-gonadal axis in male rats. Ph.D. thesis, University of Calcutta.Google Scholar
  52. Saketos, M., N. Sharma, and N.F. Santoro. 1993. Suppression of the hypothalamic-pituitary-ovarian axis in normal women by glucocorticoids. Biology and Reproduction 49(6): 1270–1276.CrossRefGoogle Scholar
  53. Sarkar, S., N.K. Sarkar, S. Bhattacharyya, and P. Das. 1997. Melatonin action on thyroid activity in the soft-shelled turtle, Lissemys punctata punctata. Folia biologica (Krakow) 45: 109–112.Google Scholar
  54. Saha, I., U. Chatterji, S. Chaudhuri-Sengupta, T.C. Nag, D. Nag, S. Banerjee, and B.R. Maiti. 2007. Ulttrastructural and hormonal changes in the pineal-testicular axis following arecoline administration in rats. Journal of Experimental Zoology 307A: 187–198.CrossRefGoogle Scholar
  55. Seggie, J., L. Campbell, G.M. Brown, and L.J. Grota. 1985. Melatonin and N acetyl serotonin stress responses: Effects of type of stimulation and housing conditions. Journal of Pineal Research 2: 39–49.CrossRefPubMedGoogle Scholar
  56. Schuurs, A.H.W.M., and B.K. Van Weeman. 1977. Review Enzyme-Immunoassay. Clinica Chemic Acta. 81: 1.CrossRefGoogle Scholar
  57. Snedecor, G.W., and W.G. Cochran. 1989. Statistical method, 8th ed. Ames, IA: Iowa State University Press.Google Scholar
  58. Seidman, M.D., and R.T. Standring. 2010. Noise and quality of life (Abs: Chronoc noise exposure can cause hypertension, tachycardia, increased cortisol release & increased physiologic stress & loss of hearing). International Journal of Environmental Research and Public Health 7(10): 3730–3838.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Soldani, P., M. Gesi, P. Lenzi, G. Natabe, F. Pornai, and A. Pellegnini. 1999. Long exposure to noise modifies, rat adrenal cortex ultrastructure and corticosterone plasma levels. Journal of Submicroscopic Cytology and Pathology 31: 441–448.PubMedGoogle Scholar
  60. Soos, M., and K. Siddle. 1982. Characterisation of monoclonal antibodies directed against human thyroid stimulating hormone. Journal of Immunology and Medicine 51: 57–68.CrossRefGoogle Scholar
  61. Spreng, M. 2002. Cortisol excretion and estimation of tolerable nighty overflights. Noise Health 4: 39–46.PubMedGoogle Scholar
  62. Stokholm, Z.A., A.M. Hansen, M.B. Grynderup, J.P. Bonde, K.L. Christensen, T.W. Frederiksen, S.P. Lund, J.M. Vestergaard, and H.A. Kolstad. 2014. Resent and long-term occupational noise exposure and salivary cortisol level. Psychoneuroendocrinology 39: 21–32.CrossRefPubMedGoogle Scholar
  63. Suchiang, P., S. Varkey, and B.B.P. Gupta. 2012. Effects of glucocorticoids on plasma levels of thyroid hormones (T4 and T3) and testicular activity in catfish, Clarius gariepinus during different phases of annual breeding cycle. Indian Journal of Experimental Biology 50(6): 398–403.PubMedGoogle Scholar
  64. Steardo, L., P. Monteleone, L. Trabace, C. Cannizzaro, M. Maj, and V. Cuomo. 2000. Sarotonergic modulation of rat pineal gland activity in vitro evidence for a 5-hydroxytryptamine (2c) receptor involvement. Journal of Pharmacology and Experimental Ther 295(1): 266–273.Google Scholar
  65. Tang, L., K.M. Peng, J.X. Wang, H.Q. Luo, and J.Y. Cheng. 2009. The morphological study of the adrenal gland of African Ostrich chicks. Tissue and Cell 41: 231–238.CrossRefPubMedGoogle Scholar
  66. Tsatsoulis, A. 2006. The role of stress in the clinical expression of thyroid autoimmunity. Annals of New York Academy and Science 1088: 382–395.CrossRefGoogle Scholar
  67. Wei, Y.N., J. Liu, Q. Shu, X.F. Huang, and J.Z. Chen. 2002. Effects of infrasound on ultrastructure of testis cell in mice. Zhonghua Nan Ke Xue 8: 323–325.PubMedGoogle Scholar
  68. Walker, W.H.O. 1977. Introduction: An approach to immunoassay. Clinical Chemistry 23: 384.PubMedGoogle Scholar
  69. Zikic, D., G. Uscebrka, D. Gladic, M. Lazarevic, S. Stojanovic, and Z. Kanacki. 2011. The influence of long term sound stress on histological structure of broiler’s adrenal glands. Biotechnology in Animal Husbandry 22(4): 1613–1619.CrossRefGoogle Scholar

Copyright information

© Zoological Society, Kolkata, India 2016

Authors and Affiliations

  • Prajna Paramita Ray
    • 1
  • Tania Chatterjee
    • 1
  • Sraboni Roy
    • 1
  • Suvojit Rakshit
    • 1
  • Madhumita Bhowmik
    • 1
  • Jaysree Guha
    • 1
  • Aniruddha Maity
    • 2
  • Indraneel Saha
    • 3
  • Ankur Bhowal
    • 2
  • Aniruddha Chatterjee
    • 2
  • Supriti Sarkar
    • 4
  • Debabrata Nag
    • 5
  • B. R. Maiti
    • 2
  1. 1.Department of ZoologyBangabasi CollegeCalcuttaIndia
  2. 2.Histophysiology Laboratory, Department of ZoologyUniversity of CalcuttaCalcuttaIndia
  3. 3.Department of ZoologySarsuna CollegeCalcuttaIndia
  4. 4.Department of ZoologyCity CollegeCalcuttaIndia
  5. 5.Department of BiochemistryGurunanak Institute of Dental Science and ResearchCalcuttaIndia

Personalised recommendations