Skip to main content
Log in

Magnetic Anisotropy vs. Shape Preferred Orientation in Quartzites with Negative Susceptibility — Implications for Analysing Strain Intensity Variations

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

Through this study the robustness of using anisotropy of magnetic susceptibility (AMS) data is tested as a gauge of intensity of shape preferred orientation (SPO) in pure quartzites that have a low mean magnetic susceptibility (Km). AMS of eight quartzite samples from the Rengali province (eastern India) is measured, and the degree of magnetic anisotropy Pj, which is a measure of the intensity of magnetic fabric is calculated. Quartz grain size, shape as well as orientation data are obtained based on SEM-EBSD analysis of each sample. Using these microstructural data, intensity of SPO of quartz grains in each sample is quantified by measuring (i) the concentration parameter (κq) and (ii) the azimuthal anisotropy of fractal dimension (AAD). Magnitude of 2D strain (E) is also estimated for each sample. Based on these data the statistical relationship between the various parameters is evaluated viz. Pj vs. κq, Pj vs. AAD, Pj vs. E, κq vs. AAD, κq vs. E, AAD vs. E. A strong linear relationship is established in each case. It is argued that quartz aspect ratio, dominant slip systems/recrystallization mechanisms cannot explain the strong linear correlations between magnetic anisotropy, SPO and strain. To further support findings of the above determined relationships, positive Km quartzites were also investigated. It is found that the latter do not show a strong relationship between the intensity of AMS, SPO and strain. It is therefore, established that whilst the variation in intensity of magnetic fabric can be used to gauge variation in intensities of strain as well as SPO in the investigated negative Km quartzites, the same is not true for positive Km quartzites, where the AMS is controlled the para/ferromagnetic phases present in the rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archanjo, C.J., Launeau, P., Bouchez, J.L. (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gamelerias (Northeast Brazil). Phys. Earth Planet. Inter., v.89, pp.63–75.

    Article  Google Scholar 

  • Bascou, J., Camps, P., Dautria, J.M. (2005) Magnetic versus crystallographic fabrics in a basaltic lava flow. Jour. Volcanol. Geothermal Res., v.145, pp.119–135.

    Article  Google Scholar 

  • Borradaile, G.J., Alford, C. (1987) Relationship between magnetic susceptibility and strain in laboratory experiments. Tectonophysics v.133, pp.121–135.

    Article  Google Scholar 

  • Borradaile, G.J., Jackson, M. (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernandez, F., Lüneburg, C.M., Aubourg, C., Jackson, M. (Eds.), Magnetic Fabric: Methods and Applications. Geol. Soc. London, Spec. Publ., no. 238, pp.299–360.

  • Borradaile, G.J., Jackson, M. (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). Jour. Struc. Geol., v.32, pp.1519–1551.

    Article  Google Scholar 

  • Braun, D., Weinberger, R., Eyal, Y., Feinstein, S., Harlavan, Y., Levi, T. (2015) Distinctive diamagnetic fabrics in dolostones evolved at fault cores, the Dead Sea Transform. Jour. Struc. Geol., v.77, pp.11–26.

    Article  Google Scholar 

  • Burmeister, K.C., Harrison, M.J., Marshak, S., Ferré, E.C., Bannister, R.A., Kodama, K.P. (2009) Comparison of Fry strain ellipse and AMS ellipsoid trends to tectonic fabric trends in very low-strain sandstone of the Appalachian fold-thrust belt. Jour. Struc. Geol., v.31, 1028–1038.

    Article  Google Scholar 

  • Cañón-Tapia, E., Chávez-Álvarez, M.J. (2004) Rotation of uniaxial ellipsoidal particles during simple shear revisited: the influence of elongation ratio, initial distribution of a multiparticle system and amount of shear in the acquisition of a stable orientation. Jour. Struc. Geol., v.26, pp.2073–2087.

    Article  Google Scholar 

  • Crowe, W.A., Nash, C.R., Harris, L.B., Leeming, P.M., Rankin, L.R. (2003) The geology of the Rengali Province: implications for the tectonic development of northern Orissa, India. Jour. Asian Earth Sci., v.21, pp.697–710.

    Article  Google Scholar 

  • de Wall, H., Bestmann, M., Ullemeyer, K. (2000) Anisotropy of diamagnetic susceptibility in Thassos marble: A comparison between measured and modeled data. Jour. Struc. Geol., v.22, pp.1761–1771.

    Article  Google Scholar 

  • Ferré, E.C., Gébelin, A., Till, J.L., Sassier, C. and Burmeister, K.C. (2014) Deformation and magnetic fabrics in ductile shear zones: A review. Tectonophysics, v.629, pp.179–188.

    Article  Google Scholar 

  • Gerik, A. (2009) Modification and automation of fractal geometry methods: new tools for quantifying rock fabrics and interpreting fabric-forming processes. Unpublished Ph.D. thesis, Technische Universität München, 126 pp.

  • Gerik, A., Kruhl, J.H. (2009) Towards automated pattern quantification: time-efficient assessment of anisotropy of 2D patterns with AMOCADO. Computers & Geosciences, v.35, pp.1087–1097.

    Article  Google Scholar 

  • Gerik, A., Kruhl, J.H., Caggianelli, A. (2010) Quantification of flow patterns in sheared tonalite crystal-melt mush: application of fractal-geometry methods. Jour. Geol. Soc. India, v.75, pp.210–224.

    Article  Google Scholar 

  • Ghosh, G., Bose, S., Das, K., Dasgupta, A., Yamamoto, T., Hayasaka, Y., Chakrabarti, K., Mukhopadhyay, J. (2016) Transpression and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: Insight from structural, fabric, and kinematic studies from the Rengali Province, eastern India. Jour. Struc. Geol., v.83, pp.156–179.

    Article  Google Scholar 

  • Goswami, S., Mamtani, M.A., Virendra, R. (2018) Quartz CPO and kinematic analysis in deformed rocks devoid of visible stretching lineations: an integrated AMS and EBSD investigation. Jour. Struc. Geol., in-press (https://doi.org/10.1016/j.jsg.2018.04.008).

  • Greiling, R.O., Verma, P.K. (2001) Strike-slip tectonics and granitoid emplacement: an AMS fabric study from the Odenwald Crystalline Complex, SW Germany. Mineral. Petrol., v.72, pp.165–184.

    Article  Google Scholar 

  • Harris, C., Franssen, R., Loosveld, R. (1991) Fractal analysis of fractures in rocks: the Cantor’s dust method — comment. Tectonophysics, v.198, pp.107–111.

    Article  Google Scholar 

  • Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., v.5, pp.37–82.

    Article  Google Scholar 

  • Hrouda, F. (1986) The effect of quartz on the magnetic anisotropy of quartzite. Studia Geophysica et Geodaetica, v.30, pp.39–45.

    Article  Google Scholar 

  • Hrouda, F. (1993) Theoretical models of magnetic anisotropy to strain relationship revisited. Phys. Earth Planet. Inter., v.77, pp.237–249.

    Article  Google Scholar 

  • Hrouda, F. (2004) Problems in interpreting AMS parameters in diamagnetic rocks. In: Martin-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds.) Magnetic fabric: methods and applications, Geol. Soc. London, Spec. Publ., no. 238, pp.49–59.

  • Issachar, R., Levi, T., Marco, S., Weinberger, R. (2015) Anisotropy of magnetic susceptibility in diamagnetic limestones reveals deflection of the strain field near the Dead Sea Fault, northern Israel. Tectonophysics, v.656, pp.175–189.

    Article  Google Scholar 

  • Jelínek, V. (1981) Characterization of magnetic fabric of rocks. Tectonophysics, v.79, pp.T63–T67.

    Article  Google Scholar 

  • Kruhl, J.H., Nega, M. (1996) The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38–43.

    Article  Google Scholar 

  • Lavallée, Y., Meredith, P.G., Dingwell, D.B., Hess, K.-U., Wassermann, J., Cordonnier, B., Gerik, A., Kruhl, J.H. (2008) Seismogenic lavas and explosive eruption forecasting. Nature, v.453, pp.507–510.

    Article  Google Scholar 

  • Levi, T., Weinberger, R. (2011) Magnetic fabrics of diamagnetic rocks and the strain field associated with the Dead Sea Fault, northern Israel. Jour. Struc. Geol., v.33, pp.566–578.

    Article  Google Scholar 

  • Majumder, S., Mamtani, M.A. (2009) Magnetic fabric in the Malanjkhand Granite (central India) — implications for regional tectonics and proterozoic suturing of the Indian shield. Phys. Earth Planet. Inter., v.172, pp.310–323.

    Article  Google Scholar 

  • Mamtani, M.A. (2010) Strain-rate estimation using fractal analysis of quartz grains in naturally deformed rocks. Jour. Geol. Soc. India, v.75, pp.202–209.

    Article  Google Scholar 

  • Mamtani, M.A. (2014) Magnetic fabric as a vorticity gauge in syntectonically deformed granitic rocks. Tectonophysics, v.629, pp.189–196.

    Article  Google Scholar 

  • Mamtani, M.A., Greiling, R.O. (2010) Serrated quartz grain boundaries, temperature and strain rate: testing fractal techniques in a syntectonic granite. In: Spalla, I., Marotta, A.M. and Gosso, G. (Eds.), Advances in Interpretation of Geological Processes: Refinement of Multi-Scale Data and Integration in Numerical Modelling. Geol. Soc. London, Spec. Publ., no. 332, pp.35–48.

  • Mamtani, M.A., Sengupta, A. (2009) Anisotropy of magnetic susceptibility analysis of deformed kaolinite: implications for evaluating landslides. Internat. Jour. Earth Sci., v.98, pp.1721–1725.

    Article  Google Scholar 

  • Mamtani, M.A., Sengupta, P., 2010. Significance of AMS analysis in evaluating superposed folds in quartzites. Geol. Magz., v.147, pp.910–918.

    Article  Google Scholar 

  • Mamtani, M.A., Vishnu, C.S. (2012) Does AMS micaceous quartzite provide information about shape of the strain ellipsoid? Internat. Jour. Earth Sci., v.101, pp.693–703.

    Article  Google Scholar 

  • Mamtani, M.A., Vishnu, C.S., Basu, A. (2012) Quantification of microcrack anisotropy in quartzite — a comparison between experimentally undeformed and deformed samples. Jour. Geol. Soc. India, v.80, pp.153–166.

    Article  Google Scholar 

  • Mamtani, M.A., Pal, T., Greiling, R.O. (2013) Kinematic analysis using AMS data from a deformed granitoid. Jour. Struc. Geol., v.50, pp.119–132.

    Article  Google Scholar 

  • Mamtani, M.A., Greiling, R.O., Karanth, R.V., Merh, S.S. (1999) Orogenic deformation and its relation with AMS fabric—an example from the southern Aravalli mountain belt, India. In: Radhakrihsna, T., Piper, J.D. (Eds.), The Indian subcontinent and Gondwana: a palaeomagnetic and rock magnetic perspective. Mem. Geol. Soc. India, no. 44, pp.9–24.

  • Mamtani, M.A., Piazolo, S., Greiling, R.O., Kontny, A., Hrouda, F. (2011) Process of magnetite fabric development during granite deformation. Earth Planet. Sci. Lett., v.308, pp.77–89.

    Article  Google Scholar 

  • Mamtani, M.A., Abhijith, V., Lahiri, S., Rana, V., Bhatt, S., Goswami, S., Renjith, A.R. (2017) Determining the reference frame for kinematic analysis in S-tectonites using AMS. Jour. Geol. Soc. India, v.90, pp.5–8.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1983) The fractal geometry of nature. Freeman, New York, 461p.

    Book  Google Scholar 

  • Misra, S., Gupta, S. (2014) Superposed deformation and inherited structures in an ancient dilational step-over zone: Post-mortem of the Rengali Province, India. Jour. Struc. Geol., v.59, pp.1–17.

    Article  Google Scholar 

  • Mondou, M., Egydio-Silva, M., Vauchez, A., Raposo, M.I.B., Oliveira, A.F. (2012) Complex, 3D strain patterns in a synkinematic tonalite batholith from the Araçuaí Neoproterozoic orogen (Eastern Brazil): Evidence from combined magnetic and isotopic chronology studies. Jour. Struc. Geol., v.39, pp.158–179.

    Article  Google Scholar 

  • Mukherji, A., Chaudhuri, A.K., Mamtani, M.A. (2004) Regional scale strain variations in the Banded Iron Formations of eastern India: results from anisotropy of magnetic susceptibility studies. Jour. Struc. Geol., v.26, pp.2175–2189.

    Article  Google Scholar 

  • Mukhopadhyay, D., Sengupta, S. (1971) Structural geometry and time relation of metamorphic recrystallisation to deformation in the Precambrian rocks near Simulpal, Eastern India. Bull. Geol. Soc. Amer., v.82, pp.2251–2260.

    Article  Google Scholar 

  • Nagata, T. (1961) Rock magnetism. Maruzen Tokyo.

    Google Scholar 

  • Naha, K. (1960) Granite emplacement in relation to thrusting in south Dhalbhum and northeastern Mayurbhanj. Quart. Jour. Geol. Min. Metall. Soc. India, v.32, pp.115–122.

    Google Scholar 

  • Nye, J. F. (1957) Physical Properties of Crystals. Clarendon Press, Oxford.

    Google Scholar 

  • Owens, W. H., Bamford, D. (1976) Magnetic, Seismic, and Other Anisotropic Properties of Rock Fabrics. Phil. Trans. Roy. Soc. London, A283, 55p.

    Google Scholar 

  • Panozzo, R. (1987) Two-dimensional strain determination by the inverse SURFOR wheel. Jour. Struc. Geol., v.9, pp.115–119.

    Article  Google Scholar 

  • Pennacchioni, G., Di Toro, G., Mancktelow, N.S. (2001) Strain-insensitive preferred orientation of porphyroclasts in Mont Mary mylonites. Jour. Struc. Geol., v.23, pp.1281–1298.

    Article  Google Scholar 

  • Piazolo, S., Passchier, C.W. (2002) Controls on lineation development in low to medium grade shear zones: a study from the Cap de Creus peninsula, NE Spain. Jour. Struc. Geol., v.24, pp.25–44.

    Article  Google Scholar 

  • Piazolo, S., Bons, P.D., Passchier, C.W. (2002) The influence of matrix rheology and vorticity on fabric development of populations of rigid objects during plane strain deformation. Tectonophysics, v.351, pp.315–329.

    Article  Google Scholar 

  • Quade, H., Reinert, T., Schmidt, D. (1994) Diamagnetic Anisotropy of Precambrian Quartzites (Moeda Formation, Taquaral Valley, Minas Gerais, Brazil). Materials Science Forum, v.157–162, pp.1675–1680.

    Article  Google Scholar 

  • Raposo, M.I.B., Gastal, M.C.P. (2009) Emplacement mechanism of the main granite pluton of the Lavras do Sul intrusive complex, South Brazil, determined by magnetic anisotropies. Tectonophysics v.466, pp.18–31.

    Article  Google Scholar 

  • Raposo, M.I.B., Drukas, C.O., Basei, M.A.S. (2014) Deformation in rocks from Itajaí basin, Southern Brazil, revealed by magnetic fabrics. Tectonophysics, v.629, pp.290–302.

    Article  Google Scholar 

  • Renjith, A.R., Mamtani, M.A., Urai, J.L. (2016) Fabric analysis of quartzites with negative magnetic susceptibility — does AMS provide information of SPO or CPO of quartz? Jour. Struc. Geol., v.82, pp.48–59.

    Article  Google Scholar 

  • Sen, K., Mamtani, M.A. (2006) Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Jour. Struc. Geol., v.28, pp.1870–1882.

    Article  Google Scholar 

  • Sen, K., Majumder, S., Mamtani, M.A. (2005) Degree of magnetic anisotropy as a strain intensity gauge in ferromagnetic granites. Jour. Geol. Soc. London, v.162, pp.583–586.

    Article  Google Scholar 

  • Tarling, D.H., Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217p.

    Google Scholar 

  • Till, J.L., Cogne, J-P., Marquer, D., Poilvet, J-C. (2015) Magnetic fabric evolution in ductile shear zones: examples in metagranites of the Aar Massif (Swiss Central Alps). Terra Nova, v.27, pp.184–194.

    Article  Google Scholar 

  • Treagus, S.H., Treagus, J.E. (2001) Effects of object ellipticity on strain, and implications for clast-matrix rocks. Jour. Struc. Geol., v.23, pp.601–608.

    Article  Google Scholar 

  • Tripathy, N.R., Srivastava, H.B., Mamtani, M.A. (2009) Evaluation of a regional strain gradient in mylonitic quartzites from the footwall of the Main Central Thrust Zone (Garhwal Himalaya, India): Inferences from finite strain and AMS analyses. Jour. Asian Earth Sci., v.34, pp.26–37.

    Article  Google Scholar 

  • Vishnu, C.S. Mamtani, M.A., Basu, A. (2010) AMS, ultrasonic P-wave velocity and Rock Strength analysis in quartzites devoid of mesoscopic foliations — implications for rock mechanics studies. Tectonophysics, v.494, pp.191–200.

    Article  Google Scholar 

  • Volland, S. and Kruhl, J.H. (2004) Anisotropy quantification: the application of fractal geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW Sardinia. Jour. Struc. Geol., v.26, pp.1499–1510.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a part of ARR’s doctoral research carried out at the Indian Institute of Technology (IIT) Kharagpur, India. The authors thank Biswajit Mishra, Manoj Kumar Ozha and B. Govindarao for SEM-EDS analysis in Department of Geology & Geophysics (IIT Kharagpur). Niloy Bhowmik is thanked for technical support in carrying out SEM-EBSD analysis at the Central Research Facility (CRF, IIT Kharagpur). Temperature variation of magnetic susceptibility measurements were made at the Karlsruhe Institute of Technology (Karlsruhe, Germany) by MAM during a research visit that was funded by the Alexander von Humboldt Foundation (Germany). Discussions with Agnes Kontny are gratefully acknowledged. Thanks are due to Koushik Sen for a thoughtful review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish A. Mamtani.

Electronic supplementary material

12594_2019_1262_MOESM1_ESM.pdf

Supplementary material for the article on Magnetic Anisotropy vs. Shape Preferred Orientation in Quartzites with Negative Susceptibility — Implications for Analysing Strain Intensity Variations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renjith, A.R., Mamtani, M.A., Abhijith, V. et al. Magnetic Anisotropy vs. Shape Preferred Orientation in Quartzites with Negative Susceptibility — Implications for Analysing Strain Intensity Variations. J Geol Soc India 94, 23–34 (2019). https://doi.org/10.1007/s12594-019-1262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1262-1

Navigation