Skip to main content
Log in

Scope of 3-D Printing in Mining and Geology: An Overview

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

The uses of 3-D printed materials are increasing at a rapid pace and even able to expand its reach among many researchers in the field of mining and geoscience. This paper describes by extensive study the practicality and benefits of using 3-D printed materials in many divisions of mining and earth science such as geology, rock mechanics, mining machinery, etc. both in academic and industry point of view. It illustrates some instances on how the complex study of rock properties like anisotropy, discontinuities, and its orientations, etc. can be simplified with the help of 3-D printed structures. It also describes how its use in various rockmass classification system such as RMR, GSI, RMi, and Q-system can make the process easier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akintomide Akinola, (2010) Rapid Prototyping Control Systems Design. Akintomide Akinola, 112p.

  • Balanoff, A., and Rowe, T.B. (2002) Osteological description of an elephant bird embryo using computed tomography and rapid prototyping, with a discussion of growth rates in Aepyornis. Jour. Vertebrate Paleont., 22:34A.

    Google Scholar 

  • Barton N. (1982) Modelling rock joint behaviour from in situ block tests: Implications for nuclear waste repository design. Prepared for Battelle Memorial Institute, under Contract DE-AC06-76-RL01830-OWI for the U.S. Department of Energy.

  • Belem T, Homand-Etienne F, Souley M. (2000) Quantitative parameters for rock joint surface roughness. Rock Mech. Rock Engg., v.33, pp.217–42.

    Article  Google Scholar 

  • Bell, L., Brown, A., Bull, G., Conly, K., Johnson, L., McAnear, A., Maddux, C., Marks, G., Thompson, A., Schmidt, D. and Schrum, L. (2010) Educational implications of the digital fabrication revolution. Tech Trends, v.54(5), pp.2–5.

    Article  Google Scholar 

  • Bodla K.K., Garimella S.V., Murthy J.Y. (2014) 3D reconstruction and design of porous media from thin sections. Internat. Jour. Heat Mass Transf., v.73, pp.250–264

    Article  Google Scholar 

  • Bourke, M., Viles, H., Nicoli, J., Lyew-Ayee, P., Ghent, R. and Holmund, J. (2008) Innovative applications of laser scanning and rapid prototype printing to rock breakdown experiments: Earth Surface Processes and Landforms, v.33, pp.1614–1621, doi: https://doi.org/10.1002/esp.1631.

    Google Scholar 

  • Bristowe, A., Parrott, A., Hack, J., Pencharz, M., and Raath, M.A. (2004) A non-destructive investigation of the skull of the small theropod dinosaur, Coelophysis rhodesiensis, using CT scans and rapid prototyping: Palaeontologia Africana, v.40, pp.159–163.

    Google Scholar 

  • Calvert, P. (2001) Inkjet printing for materials and devices. Chemistry of materials, v.13(10), pp.3299–3305.

    Article  Google Scholar 

  • Campbell, T. A., Williams, C., Ivanova, O. and Garrett, B. (2011) Could 3D Printing Change the World? Technologies, Potential and Implications of Additive Manufacturing, Strategic Foresight. Atlantic Council (https://doi.org/www.acus.org).

  • Charles H. (1986) Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330.

  • Destombes, M. (1978) Globes en relief du XVIIIe si’In ecle. Bemiethner, E., and Aurada, F. eds. Der globusfreund: Wissenschaftliche zeitschrift fur globographie und instrumentenkunde. Nr. 25–27. Wien, Germany: Festschrift zum 25j̈Bestand des Coronelli-Weltbundes der Globusahrigen freunde. pp.S.225–S.231.

  • Einstein H. H. and Dowding C. H. (1980) Shearing resistance and deformability of rock joints, Physical properties of rocks and minerals. McGraw Hill; pp.177–220.

  • Einstein H.H. and Hirschfeld R.C. (1973) Model studies on mechanics of jointed rock. Jour. Soil Mech. &Found. Div. Proc. ASCE, v.90, pp.229–248.

    Google Scholar 

  • Rengier, F., Mehndiratta, A., H. von Tengg-Kobligk et al. (2010) 3-D printing based on imaging data: review of medical applications, Internat. Jour. Computer Assisted Radiology and Surgery, v.5, pp.35–341.

    Article  Google Scholar 

  • Fardin, N. (2008) Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joints. Rock Mech. Rock Engg., v. 41, pp.267–97.

    Article  Google Scholar 

  • Fereshtenejad, S. and Song, J. J. (2016) Fundamental study on applicability of powder-based 3D printer for physical modeling in rock mechanics. Rock Mech. Rock Engg., v.49(6), pp.2065–2074.

    Article  Google Scholar 

  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., … and Zavattieri, P. D. (2015) The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, v.69, pp.65–89.

    Article  Google Scholar 

  • Goldstein M., Goosev B., Pyrogovsky N., Tulinov R. and Turovskaya A. (1966) Investigation of mechanical properties of cracked rock. Proc. Ins. Cong., Int. Soc. Rock. Mech. Lisbon, v.1, pp.521–524.

    Google Scholar 

  • Goodman, R.E. (1976) Methods of geological engineering. West Publishing Company, San Francisco, 472p.

    Google Scholar 

  • Hasiuk, F. (2014) Making things geological: 3-D printing in the geosciences. GSA Today, v.24(8), pp.28–29.

    Article  Google Scholar 

  • Hoek, E. (1961) The design of a centrifuge for simulation of gravitational force fields in mine models. Jour. S. African Inst. Mining and Metallurgy, v.65(9), pp.455–487.

    Google Scholar 

  • Horowitz, S. S. (2012). Printing space: 3D printing of digital terrain models for enhanced student comprehension and educational outreach. In: 2012 GSA Annual Meeting in Charlotte.

  • Hyatt, J.A., and Rosiene, J. (2013) Preparing image maps, physical models, and analysing topographic form using terrestrial laser scanning data collected at Dinosaur State Park, CT. Geol. Soc. Amer. Abstracts with Programs, v.45(1), pp.111

    Google Scholar 

  • Gibson, I. and Shi, D. (1997). Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping Jour., v.3(4), pp.129–136. doi:https://doi.org/10.1108/13552549710191836

    Article  Google Scholar 

  • IEEE (2014) Layer-by-Layer: The Evolution of 3-D Printing “https://doi.org/http://theinstitute.ieee.org/technology-focus/technology-history/layerbylayer-the-evolution-of-3d-printing (Date accessed: 20/02/2016)

  • Ishikawa, T., and Kastens, K.A. (2005) Why Some Students Have Trouble with Maps and Other Spatial Representations. Jour. Geosci. Education, v.53, pp.184–197.

    Article  Google Scholar 

  • Ishutov, S., Hasiuk, F., Gray, J. and Harding, C. (2014) Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems. In: AGU Fall Meeting Abstracts.

  • Ivanova, O., Williams, C., & Campbell, T. (2013). Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyping Jour., v.19(5), pp.353–364. doi:https://doi.org/10.1108/rpj-12-2011-0127

    Article  Google Scholar 

  • Jiang, C., Zhao, G. F., Zhu, J., Zhao, Y. X. and Shen, L. (2016) Investigation of dynamic crack coalescence using a gypsum-like 3D printing material. Rock Mech. Rock Engg., v.49(10), pp.3983–3998.

    Article  Google Scholar 

  • Jiang, Q., Feng, X., Gong, Y., Song, L., Ran, S., & Cui, J. (2016) Reverse modelling of natural rock joints using 3D scanning and 3D printing. Computers and Geotechnics, v.73, pp.210–220.

    Article  Google Scholar 

  • Jiang, Q., Feng, X., Song, L., Gong, Y., Zheng, H. and Cui, J. (2015). Modeling rock specimens through 3D printing: Tentative experiments and prospects. Acta Mechanica Sinica, v.32(1), pp.101–111. doi:https://doi.org/10.1007/s10409-015-0524-4

    Article  Google Scholar 

  • Jiang, C. and Zhao, G. F. (2015) A preliminary study of 3D printing on rock mechanics. Rock Mech. Rock Engg., v.48(3), pp.1041–1050.

    Article  Google Scholar 

  • Ju, Y., Xie, H., Zheng, Z., Lu, J., Mao, L., Gao, F. and Peng, R. (2014) Visualization of the complex structure and stress field inside rock by means of 3D printing technology. Chinese Science Bull., v.59(36), pp.5354–5365.

    Article  Google Scholar 

  • Kelso, R. (2013) Expanding the planetary analog test sites in hawaii-planetary basalt manipulation. In: AGU Fall Meeting Abstracts.

  • Kong et al. (2017) Elastic Properties and Size effect of 3-D Printed Rocks. Available from: https://doi.org/https://www.researchgate.net/publication/317039521_Elastic_Properties_and_Size_effect_of_3-D_Printed_Rocks

  • Lama, R.D. (1974) The uniaxial compressive strength of jointed rock, Prof. L. Müller Festschrift, Inst. Soil Mech. & Rock Mech., Univ. Karlsruhe, Karlsruhe, pp.67–77.

  • Lindqvist, K., Khudobakhshova, S., Meng, S., Urazayeva, S., and Zakhidova, D. (2012) A 3D visualization of earthquake incidence correlated to geological main structures within parts of the Tien Shan and Pamir Mountains, Central Asia: International Geological Congress Abstracts, 34:3305.

    Google Scholar 

  • Mitasova, H., Hardin, E., Starek, M.J., Harmon, R.S., and Overton, M. (2011a) Landscape dynamics from LiDAR data time series, In: Geomorphometry, Hengl, T., Evans, I.S., Wilson, J.P., Gould, M. (eds.), Redlands, CA, p.3–6.

  • Mitasova, H., Harmon, R.S, Weaver, K., Lyons, N. and Overton, M. (2011b) Scientific visualization of landscapes and landforms, Geomorphology, special issue on Geospatial Technologies and Geomorphological Mapping, doi: https://doi.org/10.1016/j.geomorph.2010.09.033

  • Osinga, S., Zambrano-Narvaez, G. and Chalaturnyk, R.J. (2015) Study of geomechanical properties of 3D printed sandstone analogue. In: 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

  • Löwe, P. and Klump, J. (2013). 3D printouts of geological structures, land surfaces and human interaction-an emerging field for science communication. In: 8th International Symposium on Archaeological Mining History.

  • Pouech, J., Mazin, J.M., and Tafforeau, P. (2010) High quality 3-D imaging of vertebrate micro-remains using X-ray synchrotron phase contrast micro-tomography: Comptes Rendus. Palévol, v.9, pp.389–395, doi: https://doi.org/10.1016/j.crpv.2010.07.010.

    Google Scholar 

  • Ramakrishnan, R., Griebel, B., Volk, W., Günther, D. and Günther, J. (2014). 3D Printing of Inorganic Sand Moulds for Casting Applications. Advanced Materials Res., v.1018, pp.441–449. doi:https://doi.org/10.4028/www.scientific.net/amr.1018.441

    Article  Google Scholar 

  • Ramamurthy, T. (2010) Engineering in Rocks for Slopes, Foundations and Tunnels, PHI Learning Pvt. Ltd.

  • Reyes, R., Bellian, J.A., Dunlap, D.B., and Eustice, R.A. (2008) Cyber techniques used to produce physical geological models: Geol. Soc. America Abstracts with Programs, v.40(6), pp.136.

    Google Scholar 

  • Sachs, E. M., Haggerty, J. S., Cima, M. J., & Williams, P. A. (1993) Three-dimensional printing techniques, US Patent 5,204,055.

  • Seitz, H., Rieder, W., Irsen, S., Leukers, B., & Tille, C. (2005) Three dimensional printing of porous ceramic scaffolds for bone tissue engineering. Jour. Biomedical Materials Res., Part B: Applied Biomaterials, v.74(2), pp.782–788.

    Article  Google Scholar 

  • Seth S. Horowitz and Peter H. Schultz, (2014) Printing Space: Using 3-D Printing of Digital Terrain Models in Geosciences Education and Research. Journal of Geoscience Education: February 2014, Vol. 62, No. 1, pp. 138–145. doi: https://doi.org/10.5408/13-031.1

    Google Scholar 

  • Stadler, A., Nagel, C., König, G. and Kolbe, T. H. (2009). Making Interoperability Persistent: A 3D Geo Database Based on CityGML. 3D Geo-Information Sciences, pp.175–192. doi:https://doi.org/10.1007/978-3-540-87395-2_11

  • Stimpson, B. (1981) Laboratory techniques for demonstrating rock mass behaviour. International Journal of Rock Mechanics Science & Geomechanical Abstract. 1/8, pp.535–537.

    Article  Google Scholar 

  • Suzuki, A., Sawasdee, S., Makita, H., Hashida, T., Li, K., & Horne, R. N. (2016). Characterization of 3D printed fracture networks. Proc. 41st Work. Geotherm. Reserv. Eng.

  • Tateosian, L.G., Mitasova, H., Foglemann, B., Harmon, B., Weaver K., and Harmon R.S. (2010) TanGeoMS: Tangible geospatial modelling system, IEEE Trans. Visualization and Computer Graphics (TVCG), v.16(6), pp.1605–1612.

    Article  Google Scholar 

  • Tyagi G. (2016) 3D Printing Technology. https://doi.org/http://nicsu.up.nic.in/knowdesk/3D-Printing-Technology.pdf (Date Accessed: 20/02/2016)

  • Tymrak, B.M., Kreiger, M. and Pearce, J.M. (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, v.58, pp.242–246.

    Article  Google Scholar 

  • Vogler, D., Walsh, S.D.C., Dombrovski, E., and Perras, M.A. (2017). A comparison of tensile failure in 3D-printed and natural sandstone. Engg. Geol., v.226, pp.221–235. doi:https://doi.org/10.1016/j.enggeo.2017.06.011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Bishwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishwal, R.M. Scope of 3-D Printing in Mining and Geology: An Overview. J Geol Soc India 93, 482–486 (2019). https://doi.org/10.1007/s12594-019-1203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1203-z

Navigation