Journal of the Geological Society of India

, Volume 93, Issue 4, pp 471–481 | Cite as

Ichnological Significance of Upper Disang Formation and Lower Barail Formation (Late Eocene to Early Oligocene) of Nagaland, Northeast India, in the Indo-Myanmar Ranges

  • H. S. RajkumarEmail author
  • I. Soibam
  • K. S. Khaidem
  • S. S. Sanasam
  • Ch. M. Khuman
Research Article


The Upper Disang-Lower Barail Transition Sequences of Nagaland in northeast India, Indo-Myanmar Ranges (IMR) are found to preserve reasonably diverse biological sedimentary structures. Three ichnofacies were observed, Skolithos ichnofacies consisting of Bergaueria hemispherica, Gyrochorte comosa, Ophiomorpha nodosa, Skolithos linearis and Thalassinoides paradoxicus; Cruziana ichnofacies — Curvolithus simplex, Scolicia plana, Scolicia strozzii, Scolicia vertebralis, Treptichnus pedum, Taenidium diesingi and Palaeophycus tubularis; and Nereites ichnofacies — Chondrites targionii and Paleomeandron elegans. Presence of Skolithos and Cruziana ichnofacies suggest well oxidising, substrate rich depositional environment in the foreshoreface to offshore setting in general; and an overall possible fluctuation in the depositional bathymetry which is supported by the presence of Nereites ichnofacies in horizons alternating with Skolithos and Cruziana ichnofacies. The depositional system is proposed to be proximal to distal hyperpycnal-delta-fed turbidite system. Observation of sand spherules also suggests possibility of shoreline as one of the depositional environments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, O.P. and Ghose, N.C. (1986) Geology and stratigraphy of the Naga Hills Ophiolite between Meluri and Awankhoo, Phek district, Nagaland, India. In: N.C. Ghose and S. Varadarajan (Eds.), Ophiolites and Indian Plate Margin. Sumna Publ., Patna, pp. 163–195.Google Scholar
  2. Allen, R., Najman, Y., Carter, A., Barfod, D, Bickle, M.J., Chapman, H.J., Garzanti, E., Vezzoli, G., Ando, S. and Parrish, R.R. (2008) Provenance of the Tertiary sedimentary rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman arc or Himalayan-derived? Jour. Geol. Soc. London, v.165, pp.1045–1057.CrossRefGoogle Scholar
  3. Alpert, S.P. (1974) Systematic review of the genus Skolithos. Jour. Paleont., v.48, pp. 661–669.Google Scholar
  4. Alpert, S.P. (1975) Planolites and Skolithos from the Upper Precambrian-Lower Cambrian, White-Inyo Mountains, California. Tour. Paleont., v.49, pp.509–521.Google Scholar
  5. Blissett, D.J. and Pickerill, R.K. (2004) Soft-sediment ichnotaxa from the Cenozoic White Limestone Group, Jamaica, West Indies. Scripta Geologica, v.127, pp.341–378.Google Scholar
  6. Brito, I.M. (1972) Contribuição ao conhecimento dos Crustáceos Decápodos da Formação Pirabas. II — O gênero Uca (Brachyura-Ocypodidae). Anais da Academia Brasileira de Ciéncias, v. 44, pp.95–98.Google Scholar
  7. Bromley, R.G. (1996) Trace Fossils: Biology, Taphonomy and Applications. Chapman and Hall, London.CrossRefGoogle Scholar
  8. Bromley, R.G. and Ekdale, A.A. (1998) Ophiomorpha irregulare (trace fossil): Redescription from the Cretaceous of the Book cliffs and Wasatch plateau, Utah. Jour. Palaeont., v.72, pp.773–778.CrossRefGoogle Scholar
  9. Brongniart, A.T. (1828) Histoire des Végétaux Fossiles ou Recherches Botaniques et Géologiques sur les Végétaux Renfermés dans les Diverses Couches du Globe, 1. G. Dufour and E. d’Ocagne, Paris, pp.1–136.Google Scholar
  10. Buatois, L.A. (2018) Treptichnus pedum and the Ediacaran-Cambrian boundary: significance and caveats. Geol. Magz., v.155(1), pp.174–180. DOI: Scholar
  11. Buatois, L.A. and Mângano, M.G. (2011) Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, pp.1–358.Google Scholar
  12. Buatois, L.A., Mángano, M.G., Mikuláš, R. and Maples, C.G. (1998) The ichnogenus Curvolithus revisited. Jour. Palaeont., v.72, pp.758–769.CrossRefGoogle Scholar
  13. Chakrabarti, A. (1972) Sedimentology, v.18 (1), pp. 129–134.CrossRefGoogle Scholar
  14. Chakrabarti, A., Chakrabarti, R. and Hertweck, G. (2006) Surface traces and bioturbate textures from bubbler crabs: an indicator of subtropical to tropical tidal ûat environments. Senckenberg. Marit., v.36(1), pp.19–27.CrossRefGoogle Scholar
  15. Chamberlain, C.K. and Baer, J.L. (1973) Ophiomorpha and New Thallasinid Burrow from the Permian of Utah. In: Bushman, J.R. (Ed.) Brigham Young University Geology Studies. A publication of the Department of Geology Brigham Young University, Utah, v.20(1), pp.79–94.Google Scholar
  16. Crimes, T.P. (1987) Trace fossils and correlation of Late Pre-Cambrian and Early Cambrian of southeastern Newfoundland (Canada): temporal and environmental implications. Jour. Paleont., v.59, pp.310–343.Google Scholar
  17. Crimes, T.P., Legg, I., Marcos, A. and Arboleya, M. (1977) Late Precambrian-Lower Cambrian trace fossils from Spain. In: Crimes, T.P. and Harper, J.C. (Eds.) Trace Fossils 2. Geol. Jour. Spec. Issue, v.9, pp.91–138.Google Scholar
  18. D’Alessandro, A. and Bromley, R.G. (1987) Meniscate trace fossils and the Muensteria-Taenidium Problem. Paleontology, v.30, pp.743–763.Google Scholar
  19. Dashtgard, S.E. and Gingras, M.K. (2012) Marine invertebrate neoichnology. In: Knaust, D. and Bromley, R.G. (Eds.) Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology No.64. Elsevier. Amsterdam, pp.273–295.CrossRefGoogle Scholar
  20. Davie, P.J.F., Shih, H.-T. and Chan, B. K. K. (2010) A new species of Mictyris (Decapoda, Brachyura, Mictyridae) from the Ryukyu Islands, Japan. In: Richer de Forges, B. (Ed.), Studies on Brachyura: A Homage to Danièle Guinot. Crustaceana Monographs, v.11, pp.83–105.Google Scholar
  21. Desai, B.G. (2015) Ichnological analysis of the Pleistocene Dwarka Formation, Gulf of Kachchh: tracemaker behaviors and reworked traces. Geodinamica Acta, v.28(1–2), pp.21–36.Google Scholar
  22. Devdas, V. and Gandhi, P. (1986) Systematic geological mapping in Maromi-Akaluto- Suruhuto areas Zunhoboto district, Nagaland GSI, Unpub. Progress Report.Google Scholar
  23. Dzik, J. (2005) Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian Explosion”. Paleobiology, v.31(3), pp.503–521.CrossRefGoogle Scholar
  24. Ekdale, A.A. and Bromley, R.G. (1991) Analysis of composite ichnofabrics: an example in uppermost Cretaceous Chalk of Denmark. Palaios, v.6, pp. 232–249.CrossRefGoogle Scholar
  25. Evans, P. (1932) Explanatory notes to accompany a table showing the Tertiary succession in Assam. Trans. Mining and Geol. Int. India, v.27, pp.155–260.Google Scholar
  26. Fillion, D. and Pickerill, R.K. (1990) Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Waban groups of eastern Newfoundland, Canada. Palaeonto-graphica Canadian, v.7, pp. 1–119.Google Scholar
  27. Frey, R.W., Curran, H.A. and Pemberton, S.G. (1984) Trace making activities of crabs and their environmental significance: the ichnogenus Psilonichnus. Jour. Palaeont., v.58, pp.33–350.CrossRefGoogle Scholar
  28. Frey, R.W., Howard, J.D. and Pryor, W.A. (1978) Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeo., Palaeoclimat., Palaeoeco., v.23, pp.199–229.CrossRefGoogle Scholar
  29. Frey, R.W. and Pemberton, S.G. (1984) Trace Fossil Facies Models. In: R.G. Walker (Ed.), Facies Models 2nd edn (Kitchener, Ontario: Ainsworth Press Limited), pp.189–207.Google Scholar
  30. Frey, R.W. and Seilacher, A. (1980) Uniformity in marine invertebrate ichnology. Lethaia, v.23, pp.183–207.CrossRefGoogle Scholar
  31. Fritch, A. (1908) Problematica Silurica: Systems Silurien du Centre de la Bohême par Joachim Barrande. Suit Éditée-aux Frais du Barrande Fonds, Prague, pp.1–24.Google Scholar
  32. Fu, S. (1991) Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebenspuren. Courier Forschungsinstitut Senckenberg. Senckenbergischen Naturforschende Gesellschaft, Frankfurt, pp.1–79.Google Scholar
  33. Fuchs, M. (1988) Über einen Neufund von Arthropodenfährten in elsterkalzeitlichen Bänderschluffen des Raumees Fürstenwalde/Spree. Fundgrube, v.24, pp.52–54.Google Scholar
  34. Fürsich, F.T., Uchman, A., Alberti, M. and Pandey, D.K. (2018) Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: The signiûcance of time-averaging in ichnology. Jour. Palaeogeography, v.7(1), pp.14–31.CrossRefGoogle Scholar
  35. Fürsich, F.T., Wilmsen, M. and Seyed-Emami, K. (2006) Ichnology of Lower Jurassic beach deposits in the Shemshak Formation at Shahmirzad, southeastern Alborz Mountains, Iran. Facies, v.52, pp.599–610.CrossRefGoogle Scholar
  36. Gaur, M.P. and Chakradhar, M. (1985) Systematic Geological Mapping around Jaluke, Kohima district, Nagaland. Geological Survey of India. Progress Report for F.S. 1984–85 (unpublished).Google Scholar
  37. Gerhard, E. (2000) Sedimentary Basins Evolution, Facies and Sediment Budget. Springer-Verlag, 2nd edn, 792p.Google Scholar
  38. Ghare, M.A. and Kulkarni, K.G. (1986) Jurassic ichnofauna of Kutch-II Wagad region. Biovigyanam, v.12, pp.44–62.Google Scholar
  39. Gibert, J.M. de and Benner, J.S. (2002) The trace fossils Gyrochorte: ethology and paleoecology. [La pista fosil Gyrochorte: etologia y paleoecologia] Revista de Paleontologia, v.17(1), pp.1–12.Google Scholar
  40. Gibert, J.M. de, Muñiz, F., Belaústegui, Z. and Hy●ný, M. (2013) Fossil and Modern Fiddler Crabs (Uca Tangeri: Ocypodidae) and Their Burrows from SW Spain: Ichnologic and Biogeographic Implications. Jour. Crustacean Biology, v.33(4), pp.537–551.CrossRefGoogle Scholar
  41. Goldring, R., Cadée, G.C. and Pollard, J.E. (2007) Climatic control of marine trace fossil distribution. In: Miller W., III, (Ed.): Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam, pp.159–171.Google Scholar
  42. Gong, Y. (1999) Flysch trace fossil from Hercynian and Indosinian Orogenic Belts of northwestern China and their palaeoenvironmental significance. Acta Geologica Sinica, v.73(4), pp.384–394.CrossRefGoogle Scholar
  43. Gupta, A.B.D. and Biswas, A.K. (2000) Geology of Assam. Geological Society of India, Bangalore, 169p.Google Scholar
  44. Haldeman, S.S. (1840) Supplement to number one of ‘A monograph of Limniades, and other fresh water univalve shells of North America’, containing description of apparently new animals in different classes and the names and characters of the subgenera in Pludina and Anculosa. Philadelphia, 3.Google Scholar
  45. Hall, J. (1847) Palaeontology of New York, State of New York (Albany, NY), v.1, 338p.Google Scholar
  46. Hallam, A. (1970) Gyrochorte and other trace fossils in the Forest marble (Bathonian) of Dorset, England. In: T.P. Crimes and J.C. Harper (Eds.), Trace Fossils 2. Journal Geology, v.9, pp.189–200.Google Scholar
  47. Heer, O. (1865) Die Urwelt der Scheweiz (Zürich), 662p.Google Scholar
  48. Heer, O. (1877) Flora Fossils Helvetiae. Die vorweltliche Flora der Schweiz. J. Würster and Co, 182p.Google Scholar
  49. Heinberg, C. (1973) The internal structure of trace fossils Gyrochorte and Curvolithus. Lethaia, v.6, pp.227–238.Google Scholar
  50. Heinberg, C. and Birkelund, T. (1984) Trace fossil assemblage and basin evolution of the Verdekløft Formation (Middle Jurassic, central East Greenland). Jour. Palaeont., v.58, pp.362–397.Google Scholar
  51. Howard, J.D. and Frey, R.W. (1975) Estuaries of the Georgia coast, U.S.A.: Sedimentology and Biology, VI, animal-sediment relationships of a salt-marsh estuary, Doboy Sound. Senckenberg, Marit, v.7, pp.30–103.Google Scholar
  52. Howard, J.D. and Frey, R.W. (1984) Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Jour. Earth Sci., v.21, pp.200–219.CrossRefGoogle Scholar
  53. Jensen, S. and Grant, S.W.F. (1998) Trace fossils from the Dividalen Group, northern Sweden: implications for Early Cambrian biostratigraphy of Baltica. Norsk Geologisk Tidsskrift, v.78, pp.305–317.Google Scholar
  54. Keij, A.J. (1965) Miocene trace fossils from Borneo. Paläontol. Z., v.39, pp.220–228.CrossRefGoogle Scholar
  55. Kenye, S.K. and Lhoupenyi, D. (2008) Geological map of Nagaland. Directorate of Geology and Mining, Govt. of Nagaland, Dimapur. Technical publication, DGM/FS-2008/No. 28.Google Scholar
  56. Khalo, A. and Pandey, N. (2018) Palaeoenvironmental Significance of Ichnofossil Assemblages from the Paleogene Sediments of Inner Fold Belt, Naga Hills, NE India. Jour. Geol. Soc. India, v.91, pp.201–208.CrossRefGoogle Scholar
  57. Knaust, D. (2017) Atlas of Trace Fossils in Well Core Appearance, Taxonomy and Interpretation. Springer International Publishing AG, 209p.Google Scholar
  58. Ksiazkiewicz, M. (1970) Observations on the ichnofauna of the Polish Caparthians. In: T.P. Crimes and J.C. Harper (Eds.), Trace Fossil, Liverpool, pp.283–322.Google Scholar
  59. Ksiazkiewicz, M. (1977) Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica, v.36, pp.1–208.Google Scholar
  60. Leszczynski, S. (2004) Bioturbation structures of Kropivnick Fucoid Marls (Campanian-Lower Maastrichtian) of Huwniki-Rybotycze area (Polish Carpathians). Geol. Quart., v.4891, pp.35–60.Google Scholar
  61. Lockley, M.G., Rindsberg, A.K. and Zeiler, R.M. (1987) The paleoenviron-mental significance of the nearshore Curvolithus ichnofacies. Palaios, v.2, pp.255–262.CrossRefGoogle Scholar
  62. Lokho, K., Singh, B.P. Kazhakielie Whiso, K. O. and Ezung, C. (2017) Ichnology of the Laisong Formation (late Eocene-early Oligocene) of the Naga Hills, Indo-Burma range (IBR): Paleoenvironmental signiûcance. Jour. Asian Earth Sci., DOI:
  63. Lundgren, S.A.B. (1891) Studier öfver fossilförande lösa block. Geol. Fören. Stockholm Förhandl, v.13, pp.111–121.CrossRefGoogle Scholar
  64. Mathur, L.P. and Evans, P. (1964) Oil in India, a brochure in 22nd I.G.C. New Delhi, 86.Google Scholar
  65. Miller, S. A. (1889) North American Geology and Palaeontology for the use of amateurs, students and scientists. Western Methodist Book Concern (Cincinnati, Ohio), 664p.Google Scholar
  66. Muniz, F., de Gibert, J.M., Mayoral, E. and Belaüstegui, Z. (2010) Bioturbation by Uca tangeri at the Nueva Umbríaspit. In: F. Muñiz, J.M. deGibert, E. Mayoral, Z. Belaústegui (Eds.), Fieldtrip Guidebook Workshop on Crustacean Bioturbation-Fossil and Recent. Universidad de Huelva, pp.37–41.Google Scholar
  67. Myrow, P.M. (1995) Thalassinoides and the enigma of Early Paleozoic open-framework burrow systems. Palaios, v.10, pp.58–74.CrossRefGoogle Scholar
  68. Noda, H. (1990) Crustacean sand-ball from the Middle Miocene Iriomote Formation in Iriomote-jima, Okinawa Prefecture, southwest Japan. Ann. Rep., Inst. Geosic., Univ. Tsukuba, v.16, pp.50–54, figs. 1–9.Google Scholar
  69. Pandey, N. (2005) Geology of Nagaland. In: Geology and Energy Resources of North-East India: Progress and Perspectives & AGM of the Geological Society of India, 9–11 Nov., 2005, pp.17–21.Google Scholar
  70. Patel, S.J., Desai, B.D., Vaidya, A.D. and Shukla, R. (2008) Middle Jurassic trace fossil from Habo Dome, Mainland Kachchh, Western India. Jour. Geol. Soc. India, v.71(3), pp.345–362.Google Scholar
  71. Pemberton, S.G. and Frey, R.W. (1982) Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Jour. Palaeont., v.56, pp.843–871.Google Scholar
  72. Pemberton, S.G., Frey, R.W. and Bromley, R.G. (1988) The Ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Canadian Jour. Earth Sci., v.25, pp.886–892. Scholar
  73. Pemberton, S.G. and Magwood, J.P.A. (1990) A unique occurrence of Bergauria in the Lower Cambrian Gog Group near Lake Louise, Alberta. Jour. Palaeont., v.64(3), pp.436–440.CrossRefGoogle Scholar
  74. Pemberton, S. G., Spila, M., Pulham, A.J., Saunders, T., MacEachern, J.A., Robbins, D. and Sinclair, I.K. (2001) Ichnology and sedimentology of shallow to marginal marine system. Geological Association of Canada, Short Course Notes, v.15, pp.1–343.Google Scholar
  75. Peruzzi, D.G. (1881) Osservazioni sui generi Paleodictyon e Paleomenadron dei terreni cretacei ed eoeocenici dell’Appennino settentrionale e centrale. Atti Soc. Toscana Sci. Nat., Mem., v.5, pp.3–8, Pisa.Google Scholar
  76. Prantl, F. 1945. Dvì záhadné Zkamenìliny (stopy). z vrstev chrustenických — dä2, Rozpravy II. Tridy Ceské Akademie, v.55, pp.3–8, Praha.Google Scholar
  77. Quatrefages, M.A., de, (1849) Note sur la Scolicia prisca (A De Q) annelid fossile de la Craie. Annales des Sciences Naturelles, 3 série Zoologie, v.12, pp.265–266.Google Scholar
  78. Rajkumar, H.S., Rodríguez-Tovar, F.J. and Soibam, I. (2008) Trace Fossils of the Upper Eocene-Lower Oligocene Transition of the Manipur, IndoMyanmar Ranges (Northeast India). Turkish Jour. Earth Sci., v.17, pp.821–834.Google Scholar
  79. Rao, R.A. (1983) Geology and hydrocarbon potential of a part of Assam-Arakan basin and its adjacent region. Petrol. Asia Jour., v.1, pp.127–158.Google Scholar
  80. Ratcliffe, B.C. and Fagerstrom, J.A. (1980) Invertebrate lebensspuren of Holocene floodplains: their morphology, origin and palaeoecological significance. Jour. Palaeont., v.54(3), pp.614–630.Google Scholar
  81. Sanasam, S.S. (2013) The crust below the Indo-Myanmar Ranges of northeast India: A preliminary model in differential isostasy. Jour. Himalayan Earth Sci., v.46(2), pp.1–7.Google Scholar
  82. Savi, P. and Meneghini, G.G. (1850) Osservazioni stratigrafiche e paleontologischeconcernati la geologia della Toscana e dei paesi limitrofi. Appendix. In: R.I. Murchison (Ed.) Memoria sulla struttura geologica delle Alpi, degli Apennini e dei Carpazi. Stamperia granducale, Firenze, pp.246–528.Google Scholar
  83. Savrda, C.H., Krawinkel, H., McCarthy, F.M.G., McHugh, C.M.G., Olson, H.C. and Mountain, G. (2001) Ichnofabrics of a Pleistocene slope succession, New Jersey margin: Relations to climate and sea-level dynamics. Palaeogeo., Palaeoclimat., Palaeoeco., v.171, pp.41–46.CrossRefGoogle Scholar
  84. Schäfer, W. (1972) Ecology and Paleontology of Marine Environments, Edinburgh, pp. 1–568.Google Scholar
  85. Schlirf, M. (2000) Upper Jurassic trace fossils from the Boulonnais (northern France). Beringeria, v.34, pp.145–213.Google Scholar
  86. Schlirf, M. and Uchman, A. (2005) Revision of the ichnogenus Sabellarifex Richter, 1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fürsich, 1981. Jour. Systemat. Palaeont., v.3, pp.115–131.CrossRefGoogle Scholar
  87. Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H. and Schweigert, G. (2010) Systematic list of fossil decapod crustaceans species. Crustac. Monogr., v.10, pp.1–222.Google Scholar
  88. Seilacher, A. (1955) Spuren und Lebensweise der Trilobiten. Abhandlungen der Akademie der wissenschaften und der Literatur, Mainz, methermatisch-naturwissenschaftliche Klasse, Jahrgang, pp.342–72.Google Scholar
  89. Seilacher, A. (1967) Bathymetry of trace fossils. Marine Geol. v.5, pp.413–428.CrossRefGoogle Scholar
  90. Seilacher, A. (1977a) Pattern analysis of Paleodictyon and related trace fossils. In: T.P. Crimes, T.P. and J.C. Harper (Eds.), Trace Fossils 2. Geol. Jour. Spec. Issue, v.9, pp.289–334.Google Scholar
  91. Seilacher, A. (1977b) Evolution of trace fossil communities. In: A. Hallam (Ed.) Patterns of Evolution, Elsevier, Amsterdam, pp.359–376.Google Scholar
  92. Shukla, U.K. and Srivastava, R. (2008) Lizard eggs from Upper Cretaceous Lameta Formation of Jabalpur, central India, with interpretation of depositional environments of the nest-bearing horizon. Cretaceous Res., v.29, pp.674–686.CrossRefGoogle Scholar
  93. Simo, V. and Starek, D. (2015) Sand spherule interpreted as crustacean feeding pellets from an Eocene shore environment (Western Carpathians — Slovakia). Palaeogeo., Palaeoclimat., Palaeoeco., v.438, pp.364–378.CrossRefGoogle Scholar
  94. Simpson, S. (1957) On the trace fossil Chondrites. Quart. Jour., Geol. Soc. London, v.112, pp.475–99.CrossRefGoogle Scholar
  95. Soibam, I. (1998) On the Geology of Manipur. In: Souvenir, IX Manipur Science Congress (March 25–27), pp.12–19.Google Scholar
  96. Soibam, I. (2000) Structural and tectonic framework of Manipur. In: Souvenir, X Manipur Science Congress (March 15–17), pp.26–37.Google Scholar
  97. Soibam, I., Sanasam, S.S., Khuman, Ch.M. and Rajkumar, H.S. (2013) IndoMyanmar ranges: Sedimentary basin of continental margin. In: Souvenir, National Conference on Sedimentation and Tectonics with Special Reference to Energy Resources of Northeast India and XXX Convention of Indian Association of Sedimentologists (November 28–30, 2013), pp.61–81.Google Scholar
  98. Soibam, I, Khuman, Ch.M. and Sanasam, S.S. (2015) Ophiolitic rocks of the Indo-Myanmar Ranges, NE India: relicts of an inverted and tectonically imbricated hyper-extended continental margin basin? In: G.M. Gibson, F. Roure and G. Manatschal (Eds.), Sedimentary Basins and crustal processes at Continental Margins: From Modern Hyper-extended Margins to Deformed Ancient Analogues. Geol. Soc. London, Spec. Publ., 413p. DOI:
  99. Srivastava, P. (2012a) “Treptichnus pedum: An Ichnofossil Representing Ediacaran — Cambrian Boundary in the Nagaur Group, the Marwar Supergroup, Rajasthan, India (PDF). Proc. Indian National Science Academy, v.78(2), pp.161–169.Google Scholar
  100. Srivastava, P. (2012b) Ediacaran discs from the Jodhpur Sandstone, Marwar Supergroup, India: a biological diversification or taphonomic interplay? International Jour. Geosciences, v.3, pp.1120–1126.Google Scholar
  101. Srivastava, S.K., Pandey, N. and Srivastava, V. (2004) Tectono-sedimentary evolution of Disang-Barail Transitional North West of Kohima, Nagaland, India. Jour. Himalayan Geol., v.25(2), pp.121–128.Google Scholar
  102. Sternberg, G.K. (1833) Versuch emer geognostich. botanischen Darstellung der Flora der Vorvwelt. IV Heft. C.E. Brenck Regenburg, 48p.Google Scholar
  103. Tchoumatchenco, P. and Uchman, A. (2001) The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Up. Jurassic-Lr. Cretaceous deep-water turbidite deposits of SW Bulgaria. Palaeogeo., Palaeoclimat., Palaeoeco., v.169, pp.85–99.CrossRefGoogle Scholar
  104. Tunis, G. and Uchman, A. (1996) Ichnology of Eocene flysch deposits of the Istria Peninsula, Croatia and Slovenia. Ichnos, v.5, pp.1–22.CrossRefGoogle Scholar
  105. Unno, J. and Semeniuk, V. (2008) Ichnological studies of the Western Australian soldier crab Mictyris occidentalis Unno 2008: correlations of ûeld and aquarium observations. Jour. Roy. Soc. West. Aust., v.91, pp.175–198.Google Scholar
  106. Uchman, A. (1995) Taxonomy and paleoecology of flysch trace fossils: The Marnoso Arenacea Formation and associated facies (Northern Appenines, Italy). Beringeria, v.15, pp.3–115.Google Scholar
  107. Uchman, A. (1998) Taxonomy and ethology of flysch trace fossils: A revision of the Marian Ksiazkiewicz collection and studies of complimentary materials. Annales Societatis Geologorum Poloniae, v.68, pp.105–218.Google Scholar
  108. Uchman, A. (1999) Ichnology of the Rhenodanubian Flysch (Lower Cretaceous—Eocene) in Austria and Germany. Beringeria, v.25, pp.67–173.Google Scholar
  109. Uchman, A. (2003) Trends in diversity, frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeo., Palaeoclimat., Palaeoeco., v.192, pp.123–142.CrossRefGoogle Scholar
  110. Uchman, A. and GaŸdzicki, A. (2006) New trace fossils from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Res., v.27, pp.153–170.Google Scholar
  111. Unger, F. (1850) Genera et species plantarum fossilium. 627p.; Vindbonae (Wilhelm Braumüller).Google Scholar
  112. Vannier, J., Calandra, I., Gaillard, C. and Zylinska, A. (2010) Priapulid worms: Pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology, v.38(8), pp. 711–714.CrossRefGoogle Scholar
  113. Webby, B.D. (1970) Late Precambrian trace fossils from New South Wales. Lethaia, v.3, pp. 79–109.CrossRefGoogle Scholar
  114. Weiss, W. (1941) Die Entstehung der “Zöpfe” im Schwarzen und Braunen Jura. Nat Volk, v.71, pp. 179–184.Google Scholar
  115. Werner, F. and Wetzel, W. (1981) Interpretation of biogenic structures in oceanic sediments. Bull. Inst. Geol. Bassin d’Aquitaine, v.31, pp. 275–288.Google Scholar
  116. Wong, K.J.H., Shih, H.-T., Chan, B.K.K. (2011) Two new species of sand-bubbler crabs, Scopimera, from north China and the Philippines (Crustacea: Decapoda: Dotillidae). Zootaxa, v.2962, pp. 21–35.CrossRefGoogle Scholar
  117. Woodward, S. (1830) A synoptic table of British Organic remains; London & Norwich, 50p.Google Scholar
  118. Yanin, B.T. and Baraboshkin, E.Yu. (2013) Thalassinoides Burrows (Decapoda Dwelling Structures) in Lower Cretaceous Sections of Southwestern and Central Crimea. Stratigraphy and Geological Correlation, 2013, v.21(3), pp. 280–290.CrossRefGoogle Scholar
  119. Zhang, L.J. and Zhao, Z. (2015) Lower Devonian trace fossils and their paleoenvironmental signiûcance from the western Yangtze Plate, South China. Turkish Jour. Earth Sci., v.24, pp.325–343.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  • H. S. Rajkumar
    • 1
    Email author
  • I. Soibam
    • 2
  • K. S. Khaidem
    • 3
  • S. S. Sanasam
    • 2
  • Ch. M. Khuman
    • 4
  1. 1.Department of GeologyUnited College LambungLambungIndia
  2. 2.Department of Earth SciencesManipur UniversityImphalIndia
  3. 3.Department of GeologyD.M. College of ScienceImphalIndia
  4. 4.Department of GeologyNagaland UniversityAizawlIndia

Personalised recommendations