Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 4, pp 455–465 | Cite as

Influence of Thermal Conductivity of Rocks on Polar Ice Sheet Recession near Schirmacher Oasis, East Antarctica

  • Ashit Kumar SwainEmail author
Research Article
  • 18 Downloads

Abstract

Thermal conductivity of individual rock types plays a noteworthy role in melting of the ice mass at the contact with the rocks. These are heavily influenced by their mineral constituents and the structural fabrics within the rocks. In the decreasing order of influence on melting of the nearby ice mass, the exposed rock units of Schirmacher Oasis are demarcated as metapelites (6.1 ± 0.37 Wm−1K−1), quartzofeldspathic augen gneiss (6.08 ± 0.04 Wm−1K−1), garnet rich biotite quartzofeldspathic gneiss with rare layers of amphibolites (4.34 ± 0.68 Wm−1K−1), charnockite-enderbite interlayered with pyroxene granulite (3.99 ± 0.44 Wm− 1K−1), quartzofeldspathic gneiss ± garnet with few enclaves of charnockite and pyroxene granulites (3.53 ± 0.22 Wm−1K−1), norite (3.38 ± 0.26 Wm−1K−1), dolerite dykes (3.32 ± 0.15 Wm−1K−1). Metamafic and metaultramafic rocks occurring as enclaves in charnockitic zones (3.07 ± 0.11 Wm−1K−1), nodular basaltic dykes (2.98 ± 0.16 Wm−1K−1) and lamprophyre dykes (2.77 ± 0.18 Wm− 1K−1). The detail investigation around Dakshin Gangotri Glacier snout at the margin of the Schirmacher Oasis and the Polar ice sheet indicates that the rocks with higher thermal conductivity values show a higher average annual recession than that of the lower thermal conductivity values. The spatial distribution and the variations in the thermal conductivity of the rocks in different places within the Schirmacher Oasis are one of the factors contributing to the differential rate of Polar ice sheet recession at its margin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhikary, S., Nakawo, M., Seko, K. and Shakya, B. (2000) Dust influence on the melting processes of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas. Debris-covered Glaciers, Proceedings of a workshop held at Seattle, Washington, IAHS Publ. no. 264, pp.43–52.Google Scholar
  2. Bose, S. and Sengupta, S. (2003) High Temperature mylonitization of quartzofeldspathic gneisses: Examples from the Schirmacher Hills, East Antarctica. Gondwana Res., v.6(4), pp. 805–816.CrossRefGoogle Scholar
  3. Carslaw, H. S. and Jaeger, J. C. (1959) Conduction of heat in solids. 2nd ed. Oxford: Clarendon Press.Google Scholar
  4. Cermak, V. and Rybach, L. (1982) Thermal conductivity and specific heat of minerals and rocks.Landolt-Bornstein; Zahlenwerte und Funktionenaus Naturwissenschaften und Technik, pp.305–343.Google Scholar
  5. Clauser, C. and Huenges, E. (1995) Thermal conductivity of Rocks and Minerals.Rock Physics and Phase Relations.A Handbook of Physical Constants. AGU Reference Shelf 3, pp.45.Google Scholar
  6. Chaturvedi, A., Singh, A., Gaur, M.P., Krishnamurthy, K.V. and Beg, M.J. (1999) A Confirmation of Polar Glacial Recession by monitoring the Snout of Dakshin Gangotri Glacier in Schirmacher range. Scientific report on fifteenth Indian Expedition to Antarctica, Tech. Pub No. 13, Department of Ocean Development, Govt. of India, New Delhi, pp.321–336.Google Scholar
  7. D’Souza, M.J., Roy, S.K. and Swain, A.K. (2011) Detailed study of schirmachermylonites to determine formation time and stress, strain, temperature involved in their formations as an implication to exhumation history. Unpublished report, Antarctica Division (Mission IV), Geol. Surv. India, pp.1–35.Google Scholar
  8. GSI (1998) Geological Map of the Schirmacher Oasis, central Dronning Maud Land, East Antarcica published by Geological Survey of India.Google Scholar
  9. Huang, J.P., Swain, A.K., Thacker, R.W., Ravindra, R., Andersen, D.T. and Bej, A.K. (2013) Bacterial diversity of the rock-water interface in an East Antarctic freshwater ecosystem, Lake Tawani(P). Aquatic Biosystems, v.9(4), pp.1–10.Google Scholar
  10. Ingersioll, L., Zobel, O.J., and Ingersoll, A.C. (1954) Heat Conduction: With Engineering Geological and other applications. Oxford and Ibh Publishing Co., Calcutta; Bombay; New Delhi, pp.15–25.Google Scholar
  11. IPCC (2010) Mastrandrea, M.D., Field, C.B., Stocker, T.F., Edenhofer, O., Ebi, K.L., Frame, D.J., Held, H., Kriegler, E., Mach, K.J., Matschoss, P.R., Plattner, G.K., Yohe, G.W. and Zwiers, F.W. 2010. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties.Intergovernmental Panel on Climate Change (IPCC). pp.1–7.Google Scholar
  12. Kayastha, R.B., Takeuchi, Y., Nakawo, M. and Ageta, Y. (2000) Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor. Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, Sept. 2000). IAHS Publ., no.264, pp.71–81.Google Scholar
  13. Mattson, L.E. (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publ., no.218, pp.289–296.Google Scholar
  14. Paech, H.J. and Stackebrandt, W. (1995) Geology: In: Bormann, P. and Fritzche, D. (Eds.). The Schirmacher Oasis, Queen Maud Land, East Antarctica, and its surroundings. JustsPerthesVerlegGotha, Darmstadt, pp.59–130.Google Scholar
  15. Pratap, B., Dobhal, D.P., Mehta, M. and Bhambri, R. (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya, India. Annals of Glaciology, v.56(70), pp.9–16. doi: https://doi.org/10.3189/2015AoG70A971 CrossRefGoogle Scholar
  16. Ravikant, V., Bhaskar Rao, Y.J. and Gopalan, K. (2004) Schirmacher Oasis as an Extension of Neoproterozoic East African Orogen into Antarctica: New Sm-Nd Isochron age constraints. Jour. Geol., v.112, pp.607–616.CrossRefGoogle Scholar
  17. Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. (2010) Effects of debris on ice-surface melting rates: an experimental study. Jour. Glaciol., v.56(197), 384–394.CrossRefGoogle Scholar
  18. Sengupta, S.M. (1986) Geology of Schirmacher range (Dakshin Gangotri), East Antarctica. Sci. Rep., 3rd Indian Sci. Exp. Antarctica. DOD, Govt. of India Publ., Technical Publ., no.3, pp.187–217.Google Scholar
  19. Shrivastava, P.K., Asthana, R. and Roy, S.K. (2011) The Ice Sheet Dynamics around Dakshin Gangotri Glacier, Schirmacher Oasis, East Antarctica vis-à-vis Topography and Meteorological parameters, Jour. Geol. Soc. India, v. 78, pp.117–123.CrossRefGoogle Scholar
  20. Sundberg, J. and Gabrielsson, A. (1999) Laboratory and field measurements of thermal properties of the rocks in the prototype repository at Äspö HRL., Report SKB IPR-99–17. Stockholm: SvenskKärnbränslehantering AB, pp.17–19.Google Scholar
  21. Sunil, P.S., Reddy, C.D., Ponraj, M. and Dhar, A. (2008) Application of Global Positioning System (GPS) for Glacier Studies at Schirmacher Oasis, East Antarctica. Twenty Second Indian Expedition to Antarctica, Scientific Report, Ministry of Earth Sciences, Technical Publ. No.20, pp.53–62.Google Scholar
  22. Swain, A.K. (2015) Geomorphological Evolution of Schirmacher Oasis. Ph. D. Thesis, Ravenshaw University. pp.103–106.Google Scholar
  23. Swain, A.K. (2018) Bathymetry of Schirmacher Lakes as a tool for Geomorphological studies. In: Siegert, M.J., Jameison, S.S.R. & White, D.A. (eds.) Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes. Geol. Soc. London, Spec. Publ., no.461, pp. 77–93. doi  https://doi.org/10.1144/SP461.13.
  24. Swain, A.K., Mukhtar, M.A., Majeed, Z. and Shukla, S.P. (2018) Depth profiling and recessional history of the Hamtah and Parang glaciers in Lahaul and Spiti, Himachal Pradesh, Indian Himalaya. In: Pant, N.C., Ravindra, R., Srivastava, D. and Thompson, L.G. (Eds.), The Himalayan Cryosphere: Past and Present. Geol. Soc. London, Spec. Publ., no.462, doi:  https://doi.org/10.1144/SP462.11.
  25. Swain, A.K. and Chandra, V. (2017) Ice sheet dynamics around Schirmacher Oasis, cDML, East Antarctica. Report, Mission-IV, Geol. Surv. India, pp. 1–76.Google Scholar
  26. Swain, A.K. and Goswami, S. (2014) Continuous GPR survey using Multiple Low Frequency antennas — case studies from Schirmacher Oasis, East Antarctica. Internat. Jour. Earth Sci. Engg., v.7(4), pp.1623–1629.Google Scholar
  27. Swain, A.K. and Raghuram (2016) Recessional history of the Polar Ice sheet in the Schirmacher Oasis, East Antarctica. Mission-IV, Geol. Surv. India, Unpubld. Report, pp. 1–43.Google Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Geological Survey of IndiaSU: SikkimGangtokIndia

Personalised recommendations