Oscillation of First Order Neutral Differential Equations with Delay

Abstract

A class of first order neutral delay differential equations are investigated, and sufficient condition is derived for all solutions to be oscillatory. This result solves an open problem in the literature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Agarwal, R.P., Bohner, M., Li, W.T.: Nonoscillation and Oscillation : Theory for Functional Differential Equations. Marcel Dekker Inc, New York (2004)

    Google Scholar 

  2. 2.

    Ahmed, F.N., Ahmad, R.R., Din, U.K.S., Noorani, M.S.M.: Oscillations for neutral functional differential equations. Sci. World J. (2014). https://doi.org/10.1155/2014/124310

    Article  MATH  Google Scholar 

  3. 3.

    Chen, M.P., Yu, J.S., Huang, L.H.: Oscillations of first order neutral differential equations with variable coefficients. J. Math. Anal. Appl. 185, 288–301 (1994)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chen, M.P., Yu, J.S., Wang, Z.C.: Nonoscillation solutions of neutral delay differential equations. Bull. Austral. Math. Soc. 48, 475–483 (1993)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chuanxi, Q., Kulenovic, M.R.S., Ladas, G.: Oscillation of neutral equations with variable coefficients. Rad. Mat. 5, 321–331 (1989)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Chuanxi, Q., Ladas, G.: Oscillation of neutral differential equations with variable coefficients. Appl. Anal. 32, 215–228 (1989)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chuanxi, Q., Ladas, G.: Oscillation of first-order neutral equations with variable coefficients. Monatsh. Math. 109, 103–111 (1990)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Erbe, L.H., Kong, Q.K.: Oscillation and nonoscillation properties of neutral differential equations. Canad. J. Math. 46, 284–297 (1994)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gopalsamy, K., Zhang, B.G.: Oscillation and nonoscillation in first order neutral differential equations. J. Math. Anal. Appl. 151, 42–57 (1990)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Oxford Univ. Press, New York (1991)

    Google Scholar 

  11. 11.

    Ladas, G., Sficas, Y.G.: Oscillation of neutral delay differential equations. Canad. Math. Bull. 29, 438–445 (1986)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Li, W.: Oscillation of first order neutral nonlinear differential equations with variable coefficients. Indian J. pure Appl. Math. 29, 605–615 (1998)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Parhi, N., Rath, R.N.: On oscillation and asymptotic behavior of solutions of forced first order neutral differential equations. Proc. Indian Acad. Sci. 111, 337–350 (2001)

    MATH  Google Scholar 

  14. 14.

    Yang, B., Zhang, B.G.: Qualitative analysis of a class of neutral differential equations. Funkcialaj Ekvacioj. 39, 347–62 (1996)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Yu, J.S., Wang, Z.C., Qian, C.: Oscillation of neutral delay differential equations. Bull. Austral. Math. Soc. 45, 195–200 (1992)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Zhang, B.G., Yu, J.S.: Existence of positive solutions for neutral differential equations. Sci. Sin. (Ser. A) 8, 1305–1313 (1992)

    Google Scholar 

Download references

Acknowledgements

The author would like to express their sincere gratitude to the referee for a number of valuable comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yutaka Shoukaku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoukaku, Y. Oscillation of First Order Neutral Differential Equations with Delay. Differ Equ Dyn Syst (2020). https://doi.org/10.1007/s12591-020-00531-x

Download citation

Keywords

  • Oscillation
  • Neutral differential equation
  • Delay

Mathematics Subject Classification

  • 34K11
  • 34C10