Three-Dimensional Finite Element Model to Study Calcium Distribution in Astrocytes in Presence of VGCC and Excess Buffer


The role of astrocytes in physiological processes is always a matter of interest for biologists, mathematicians and computer scientists. Similar to neurons, astrocytes propagate Ca2+ over long distances in response to stimulation and release gliotransmitters in a Ca2+-dependent manner to modulate various important brain functions. There are various processes and parameters that affect the cytoplasmic calcium concentration level of astrocytes like calcium buffering, influx via calcium channels, etc. Buffers bind with calcium ion (Ca2+) and makes calcium bound buffers. Thus, it decreases the calcium concentration [Ca2+] level. Ca2+ enters into the cytosol through voltage gated calcium channel (VGCC) and thus it increases the concentration level. In view of above, a three-dimensional mathematical model is developed for combined study of the effect of buffer and VGCC on cytosolic calcium concentration in astrocytes. Finite element method is applied to find the solution using hexagonal elements. A computer programme is developed for entire problem to simulate the results. The obtained results show that high affinity buffer reveals the effect of VGCC and at low buffer concentration VGCC effects more significantly.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Deitmer, J.W., Verkhratsky, A.J., Lohr, C.: Calcium signalling in glial cells. Cell Calcium 24, 405–416 (1998)

    Article  Google Scholar 

  2. 2.

    Verkhratsky, A., Butt, A.: Glial Neurobiology: A Textbook. Wiley, New York (2007)

    Google Scholar 

  3. 3.

    Fellin, T.: Communication between neuron and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108(3), 533–544 (2009)

    Article  Google Scholar 

  4. 4.

    Nedergaard, M., Rodriguez, J.J., Verkhratsky, A.: Glial calcium and disease of the nervous system. Cell Calcium 47, 140–149 (2010)

    Article  Google Scholar 

  5. 5.

    Liu, Q.S., Xu, Q., Kang, J., Nedergaard, M.: Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol. 1, 307–316 (2004)

    Article  Google Scholar 

  6. 6.

    Fiacco, T.A., Agulhon, C., McCarthy, K.D.: Sorting out astrocyte physiology from pharmacology. Annu. Rev. Pharmacol. Toxicol. 49, 151–174 (2009)

    Article  Google Scholar 

  7. 7.

    Cornell-Bell, A., Finkbeiner, S.M.: Ca2+ waves in astrocytes. Cell Calcium 12, 185–204 (1991)

    Article  Google Scholar 

  8. 8.

    Zeng, S., Li, B., Zeng, S., Chen, S.: Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels. Biophys. J. 97, 2429–2437 (2009)

    Article  Google Scholar 

  9. 9.

    Jha, A., Adlakha, N., Jha, B.: Finite element model to study effect of Na+–Ca2+ exchangers and source geometry on calcium dynamics in a neuron cell. J. Mech. Med. Biol. 16(2), 1–22 (2015)

    Google Scholar 

  10. 10.

    Jha, A., Adlakha, N.: Finite element model to study the effect of exogenous buffer on calcium dynamics in dendritic spines. Int. J. Model. Simul. Sci. Comput. 5(2), 1–12 (2014)

    Article  Google Scholar 

  11. 11.

    Jha, A., Adlakha, N.: Analytical solution of two dimensional unsteady state problem of calcium diffusion in a neuron cell. J. Med. Imaging Health Inform. 4(4), 547–553 (2014)

    Article  Google Scholar 

  12. 12.

    Tewari, S.G., Pardasani, K.R.: Modeling effect of sodium pump on calcium oscillations in neuron cells. J. Multiscale Model. 4(3), 1–16 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Tewari, S.G., Pardasani, K.R.: Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers. IAENG Int. J. Appl. Math. 40(3), 108–112 (2010)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Jha, B.K., Adlakha, N., Mehta, M.N.: Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int. J. Biomath. 7(3), 1–11 (2014)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Jha, B.K., Adlakha, N., Mehta, M.: Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int. J. Model. Simul. Sci. Comput. 4(2), 1250030-1–1250030-15 (2016)

    Google Scholar 

  16. 16.

    Naik, P.A., Pardasani, K.: Finite element model to study calcium distribution in oocytes involving voltage gated calcium channel, ryanodine receptor and buffers. Alex. J. Med. 52(1), 43–49 (2016)

    Article  Google Scholar 

  17. 17.

    Naik, P.A., Pardasani, K.: 2D finite element analysis of calcium distribution in oocytes. Netw. Model. Anal. Health Inform. Bioinform. 7, 1–11 (2018)

    Article  Google Scholar 

  18. 18.

    Kumar, H., Naik, P.A., Pardasani, K.: Finite element model to study calcium distribution in T lymphocyte involving buffers and ryanodine receptors. Proc. Natl. Acad. Sci. India Sect. A 88(4), 585–590 (2018)

    Article  Google Scholar 

  19. 19.

    Naik, P.A., Pardasani, K.: Three dimensional finite element model to study effect of RyR calcium channel, ER leak and SERCA pump on calcium distribution in oocyte cell. Int. J. Comput. Methods 16(1), 1–19 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Dave, D.D., Jha, B.K.: Analytically depicting the calcium diffusion for Alzheimer’s affected cell. Int. J. Biomath. 11(7), 1–17 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Jha, B.K., Joshi, H., Dave, D.D.: Portraying the effect of calcium-binding proteins on cytosolic calcium concentration distribution fractionally in nerve cells. Interdiscip. Sci. Comput. Life Sci. 10(4), 674–685 (2018)

    Article  Google Scholar 

  22. 22.

    Adler, E., Augustine, G., Duffy, S., Charlton, M.: Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11(6), 1496–1507 (1991)

    Article  Google Scholar 

  23. 23.

    Wang, Z., Tymianski, M., Jones, O.T., Nedergaard, M.: Impact of calcium buffering on the spatial and temporal characteristics of intercellular calcium signals in astrocytes. J. Neurosc. 17(19), 7359–7371 (1997)

    Article  Google Scholar 

  24. 24.

    Smith, G.D., Dai, L., Miura, R.M., Sherman, A.: Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J. Appl. Math. 61, 1816–1838 (2000)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Smith, G.D.: Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J. 71, 3064–3072 (1996)

    Article  Google Scholar 

  26. 26.

    Keener, J., Sneyd, J.: Mathematical physiology, vol. 8, pp. 53–56. Springer, Berlin (1998)

    Google Scholar 

  27. 27.

    Verkhratsky, A., Rodríguez, J.J., Parpura, V.: Molecular and cellular endocrinology calcium signalling in astroglia. Mol. Cell. Endocrinol. 353(1–2), 45–56 (2012)

    Article  Google Scholar 

  28. 28.

    Hofmann, F., Biel, M., Flockerzi, V.: Molecular basis for Ca2+ channel diversity. Annu. Rev. Neurosci. 17, 399–418 (1994)

    Article  Google Scholar 

  29. 29.

    Huguenard, J.R.: Low threshold calcium currents in central nervous system. Annu. Rev. Physiol. 58, 329–348 (1996)

    Article  Google Scholar 

  30. 30.

    Macvicar, B.A.: Voltage-dependent calcium channels in glial cells. Science 226, 1345–1347 (1984)

    Article  Google Scholar 

  31. 31.

    Rao, S.S.: Finite element method in engineering. Books. Elsevier Science and Technology, New York (2004)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Brajesh Kumar Jha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Jha, A. & Adlakha, N. Three-Dimensional Finite Element Model to Study Calcium Distribution in Astrocytes in Presence of VGCC and Excess Buffer. Differ Equ Dyn Syst 28, 603–616 (2020).

Download citation


  • Ca2+ concentration
  • Buffer
  • Voltage gated calcium channel
  • Finite element method

Mathematics Subject Classification

  • 65L60
  • 62P10
  • 92C35