Skip to main content
Log in

A New Two-Level Implicit Scheme for the System of 1D Quasi-Linear Parabolic Partial Differential Equations Using Spline in Compression Approximations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we proposed a new two-level implicit method of accuracy two in time and four in space based on spline in compression approximations using two half-step points and a central point on a uniform mesh for the numerical solution of the system of 1D quasi-linear parabolic partial differential equations subject to appropriate initial and natural boundary conditions prescribed. The proposed method is derived directly from the continuity condition of the first order derivative of the non-polynomial compression spline function. The stability analysis for a model problem is discussed. The method is directly applicable to problems in polar systems. To demonstrate the strength and utility of the proposed method, we have solved generalized Burgers–Huxley equation, generalized Burgers–Fisher equation, coupled Burgers-equations and parabolic equations with singular coefficients. We show that the proposed method enables us to obtain high accurate solution for high Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)

    MATH  Google Scholar 

  2. Kolmogorov, A.N., Petrovskii, I.G., Piskunov, N.S.: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul. Moskovskogo Gos Univ. 1(7), 1–26 (1937)

    Google Scholar 

  3. Satsuma, J., Ablowitz, M., Fuchssteiner, B., Kruskal, M.: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations. World Scientific, Singapore (1987)

    Google Scholar 

  4. Wang, X.Y., Zhu, Z.S., Lu, Y.K.: Solitary wave solutions of the generalized Burgers–Huxley equation. J. Phys. A: Math. Gen. 23, 271–274 (1990)

    Article  MATH  Google Scholar 

  5. Scott, A.C.: Neurophysics. Wiley, New York (1977)

    Google Scholar 

  6. Wang, X.: Nerve propagation and wall in liquid crystals. Phys. Lett. A 112(8), 402–406 (1995)

    Article  Google Scholar 

  7. Whiteman, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    Google Scholar 

  8. Dehghan, M., Heris, J.M., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33(11), 1384–1398 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Satsuma, J.: Exact Solutions of Burgers Equation with Reaction Terms Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, pp. 255–262. World Scientific Publishing, Singapore (1986)

    Google Scholar 

  10. Bratsos, A.G.: A fourth order improved numerical scheme for the generalized Burgers–Huxley equation. Am. J. Comput. Math. 1, 152–158 (2011)

    Article  Google Scholar 

  11. Mohammadi, R.: Spline solution of the generalized Burgers’–Fisher equation. Appl. Anal. 91(12), 2189–2215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duan, Y., Kong, L., Zhang, R.: A lattice Boltzmann model for the generalized Burgers–Huxley equation. Phys. A 391(3), 625–632 (2012)

    Article  Google Scholar 

  13. Zhang, R., Yu, X., Zhao, G.: The local discontinuous Galerkin method for Burgers–Huxley and Burgers–Fisher equations. Appl. Math. Comput. 218, 8773–8778 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Macias-Diaz, J.E.: On an exact numerical simulation of solitary wave-solutions of the Burgers–Huxley equation through Cardano’s method. BIT Numer. Math. 54, 763–776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mittal, R.C., Tripathi, A.: Numerical solutions of generalized Burgers–Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines. Int. J. Comput. Math. 92(5), 1053–1077 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohanty, R.K., Dai, W., Liu, D.: Operator compact method of accuracy two in time and four in space for the solution of time independent Burgers–Huxley equation. Numer. Algorithms 70, 591–605 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Celik, I.: Chebyshev wavelet collocation method for solving generalized Burgers–Huxley equation. Math. Methods Appl. Sci. 39, 366–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fahmy, E.S.: Travelling wave solutions for some time-delayed equations through factorizations. Chaos Solitons Fract. 38, 1209–1216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kudryashov, N.A.: Comment on: a novel approach for solving the Fisher equation using Exp-function method [Phys. Lett. A 372 (2008) 3836]. Phys. Lett. A 373(2009), 1196–1197 (2008)

    MATH  Google Scholar 

  20. Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3507–3529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohanty, R.K., Jha, N., Evans, D.J.: Spline in compression method for the numerical solution of singularly perturbed two point singular boundary value problems. Int. J. Comput. Math. 81, 615–627 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohanty, R.K., Evans, D.J., Arora, U.: Convergent spline in tension methods for singularly perturbed two point singular boundary value problems. Int. J. Comput. Math. 82, 55–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohanty, R.K., Jha, N.: A class of variable mesh spline in compression methods for singularly perturbed two point singular boundary value problems. Appl. Math. Comput. 168, 704–716 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Mohanty, R.K., Arora, U.: A family of non-uniform mesh tension spline methods for singularly perturbed two point singular boundary value problems with significant first derivatives. Appl. Math. Comput. 172, 531–544 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Rashidinia, J., Mohammadi, R.: Non-polynomial cubic spline methods for the solution of parabolic equations. Int. J. Comput. Math. 85, 843–850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jain, M.K., Jain, R.K., Mohanty, R.K.: Fourth order difference method for the one-dimensional general quasi-linear parabolic partial differential equation. Numer. Methods Partial Differ. Equ. 6, 311–319 (1990)

    Article  MATH  Google Scholar 

  27. Jain, M.K., Jain, R.K., Mohanty, R.K.: High order difference methods for system of 1-D non-linear parabolic partial differential equations. Int. J. Comput. Math. 37, 105–112 (1990)

    Article  MATH  Google Scholar 

  28. Mohanty, R.K.: An implicit high accuracy variable mesh scheme for 1D non-linear singular parabolic partial differential equations. Appl. Math. Comput. 186, 219–229 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Mohanty, R.K.: On the use of AGE algorithm with a new high accuracy Numerov type variable mesh discretization for 1D non-linear parabolic equations. Numer. Algorithms 54, 379–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mohanty, R.K.: Application of AGE method to high accuracy variable mesh arithmetic average type discretization for 1D non-linear parabolic initial boundary value problems. Int. J. Comput. Methods Eng. Sci. Mech. 11, 133–141 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dehghan, M., Hamidi, A., Shakourifar, M.: The solution of coupled Burgers’ equations using Adomian–Pade technique. Appl. Math. Comput. 189, 1034–1047 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Rashid, A., Ismail, A.: A Fourier pseudospectral method for solving coupled viscous Burgers’ equations. Comput. Methods Appl. Math. 9, 412–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mittal, R.C., Jiwari, R.: Differential quadrature method for numerical solution of coupled viscous Burgers’ equations. Int. J. Comput. Methods Eng. Sci. Mech. 13, 88–92 (2012)

    Article  MathSciNet  Google Scholar 

  34. Mohanty, R.K., Jain, M.K.: High-accuracy cubic spline alternating group explicit methods for 1D quasi-linear parabolic equations. Int. J. Comput. Math. 86, 1556–1571 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mohanty, R.K.: A variable mesh C-SPLAGE method of accuracy O (k 2 h −1 l +kh l + h 3 l ) for 1D nonlinear parabolic equations. Appl. Math. Comput. 213, 79–91 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Mohanty, R.K., Talwar, J.: SWAGE algorithm for the cubic spline solution of nonlinear viscous Burgers’ equation on a geometric mesh. Results Phys. 03, 195–204 (2013)

    Article  Google Scholar 

  37. Talwar, J., Mohanty, R.K.: Coupled reduced alternating group explicit algorithm for third order cubic spline method on a non-uniform mesh for nonlinear singular two point boundary value problems. Proc Natl Acad Sci India Sect A Phys Sci 85, 71–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Talwar, J., Mohanty, R.K., Singh, S.: A new spline in compression approximation for one space dimensional quasilinear parabolic equations on a variable mesh. Appl. Math. Comput. 260, 82–96 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Talwar, J., Mohanty, R.K., Singh, S.: A new algorithm based on spline in tension approximation for 1D quasilinear parabolic equations on a variable mesh. Int. J. Comput. Math. 93, 1771–1786 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hageman, L.A., Young, D.M.: Applied Iterative Methods. Dover, New York (2004)

    MATH  Google Scholar 

  41. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  42. Mittal, R.C., Jiwari, R.: Numerical study of Burgers–Huxley equation by differential quadrature method. Int. J. Appl. Math. Mech. 5, 1–9 (2009)

    MATH  Google Scholar 

  43. Kaushik, A.: Pointwise uniformly convergent numerical treatment for the non-stationary Burgers–Huxley using grid equidistribution. Int. J. Comput. Math. 84(10), 1527–1546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nee, J., Duan, J.: Limit set of trajectories of the coupled viscous Burgers’ equations. Appl. Math. Lett. 11, 57–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kaya, D.: An explicit solution of coupled viscous Burgers’ equations by the decomposition method. Int. J. Math. Math. Sci. 27, 675–680 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sari, M., Gürarslan, G., Zeytinoglu, A.: High-order finite difference schemes for the solution of the generalized Burgers’–Fisher equation. Commun. Numer. Methods Eng. (2011). https://doi.org/10.1002/cnm.1360

    MATH  Google Scholar 

  47. Zhu, C.-G., Kang, W.-S.: Numerical solution of Burgers’–Fisher equation by cubic B-spline quasi- interpolation. Appl. Math. Comput. 216, 2679–2686 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Sari, M., Gürarslan, G., Dag, I.: A compact finite difference method for the solution of the generalized Burgers’–Fisher equation. Numer. Methods Partial Differ. Equ. 26, 125–134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their valuable suggestions, which substantially improved the standard of the paper. This research work is partly supported by CSIR-SRF, Grant no: 09/045(1161)/2012-EMR-I and partly supported by ‘The Department of Science and Technology, Government of India’ under the ‘Mathematical Research Impact Centric Support (MATRICS) Scheme—Grant no: MTR/2017/000163’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mohanty.

Additional information

This work is partially supported by CSIR-SRF, Grant no.: 09/045(1161)/2012-EMR-I, and partially supported by DST-MATRICS, Grant no.: MTR/2017/000163’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, R.K., Sharma, S. & Singh, S. A New Two-Level Implicit Scheme for the System of 1D Quasi-Linear Parabolic Partial Differential Equations Using Spline in Compression Approximations. Differ Equ Dyn Syst 27, 327–356 (2019). https://doi.org/10.1007/s12591-018-0427-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-018-0427-5

Keywords

Mathematics Subject Classification

Navigation