Skip to main content
Log in

Existence and Uniqueness of Solutions for a Nonlinear Coupled System of Fractional Differential Equations on Time Scales

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we establish the criteria for the existence and uniqueness of solutions of a two-point BVP for a system of nonlinear fractional differential equations on time scales.

$$\begin{aligned} \begin{aligned} \Delta _{a^{\star }}^{\alpha _{1}-1}x(t)&=f_{1}(t, x(t), y(t)),\quad t\in J:=[a,b]\cap \mathbb {T},\\ \Delta _{a^{\star }}^{\alpha _{2}-1}y(t)&=f_{2}(t, x(t), y(t)),\quad t\in J:=[a,b]\cap \mathbb {T},\\ \end{aligned} \end{aligned}$$

subject to the boundary conditions

$$\begin{aligned} \begin{aligned} x(a)=0,&\quad x^{\Delta }(b)=0,\quad x^{\Delta \Delta }(b)=0,\\ y(a)=0,&\quad y^{\Delta }(b)=0,\quad y^{\Delta \Delta }(b)=0. \end{aligned} \end{aligned}$$

where \(\mathbb {T}\) is any time scale (nonempty closed subsets of the reals), \(2<\alpha _{i}<3\) and \(f_{i}\in C_{rd}([a,b]\times \mathbb {R}\times \mathbb {R}, \mathbb {R})\) and \(\Delta _{a^{\star }}^{\alpha _{i}-1}\) denotes the delta fractional derivative on time scales \(\mathbb {T}\) of order \(\alpha _{i}-1\) for \(i=1, 2\). By using the Banach contraction principle. Finally, an example is given to illustrate the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35(1–2), 3–22 (1999)

    Article  MathSciNet  Google Scholar 

  2. Ahmadkhanlu, A., Jakanshahi, M.: On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales. Bull. Iran. Math. Soc. 38(1), 241–252 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Anastassiou, G.A.: Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 59, 3750–3762 (2010)

    Article  MathSciNet  Google Scholar 

  4. Anastassiou, G.A.: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 52, 556–566 (2010)

    Article  MathSciNet  Google Scholar 

  5. Atici, F.M., Eloe, P.W.: Transform method in discrete fractional calculus. Int. J. Differ. Equ. 2, 165–176 (2007)

    MathSciNet  Google Scholar 

  6. Atici, F.M., Eloe, P.W.: Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 17, 445–456 (2011)

    Article  MathSciNet  Google Scholar 

  7. Atici, F.M., Eloe, P.W.: Fractional \(q\)-calculus on a time scale. J. Nonlinear Math. Phys. 14, 341–352 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bastos, N.R.O., Mozyrska, D., Torres, D.F.M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11, 1–9 (2011)

    MathSciNet  Google Scholar 

  9. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  10. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  11. Benkhettou, N., Hammoudi, A., Torres, D.F.M.: Existence and uniqueness of solution for a fractional Riemann–Liouville initial value problem on time scales. J. King Saudi Univ. Sci. 28, 87–92 (2016)

    Article  Google Scholar 

  12. Baleanu, D., Bhrawy, A.H., Torres, D.F.M., Salahshour, S.: Fractional and time-scales differential equations. Abstr. Appl. Anal. 2014. (2014). https://doi.org/10.1155/2014/365250

  13. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  Google Scholar 

  14. Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional \(q\)-differences. Comput. Math. Appl. 61, 367–373 (2011)

    Article  MathSciNet  Google Scholar 

  15. Goodrich, C.S.: Existence of positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput. 217, 4740–4753 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Goodrich, C.S.: On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 385, 111–124 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

    Article  MathSciNet  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam (2006)

  19. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groningen (1964)

    MATH  Google Scholar 

  20. Lakshmikantham, V., Sivasundaram, S., Kaymakcalan, B.: Dynamic Systems on Measure Chains. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  22. Nageswararao, S.: Multiple positive solutions for a system of Riemann–Liouville fractional order two-point boundary value problems. Panam. Math. J. 25(1), 66–81 (2015)

    MathSciNet  Google Scholar 

  23. Nageswararao, S.: Existence and multiplicity for a system of fractional higher-order two-point boundary value problem. J. Appl. Math. Comput. 51(1–2), 93–107 (2016)

    MathSciNet  Google Scholar 

  24. Oldham, K.B., Spanier, J.: Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order. Academic press, New York (1974)

    MATH  Google Scholar 

  25. Sabatier, J., Agrawal, O.P., Machado, J.A.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Heidelberg (2007)

    Book  Google Scholar 

  26. Sun, J.X.: Nonlinear Functional Analysis and Its Application. Science Press, Beijing (2008)

    Google Scholar 

  27. Williams, P.A.: Fractional calculus on time scales with Taylor’s theorem. Fract. Calc. Appl. Anal. 15, 616–638 (2007)

    Article  MathSciNet  Google Scholar 

  28. Yaslan, I., Liceli, O.: Three-point boundary value problems with delta Riemann–Liouville fractional derivative on time scales. Fract. Differ. Calc. 6(1), 1–16 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, J., Zhu, Y.: Fractional Cauchy problem with Riemann–Liouville fractional derivative on time scales. Abstr. Appl. Anal. 2013, 1–19. Article ID 401596 (2013)

  30. Zhang, X., Zhu, C.: Cauchy problem for a class of fractional differential equations on time scales. Int. J. Comput. Math. 91, 527–538 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhou, C.: Existence and uniquencess of positive solutions to higher-order nonlinear fractional differential equation with integral boundary condition. Electron. J. Differ. Equ. 2012(234), 1–11 (2012)

    Google Scholar 

  32. Zhang, X.Z., Zhu, C.X., Wu, Z.Q.: The Cauchy problem for a class of fractional impulsive differential equations with delay. Electron. J. Qual. Theory Differ. Equ. 37, 1–13 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I am indebted to the most respected Professor K. Rajendra Prasad and my heartfelt sincere thanks to the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabbavarapu Nageswara Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S.N. Existence and Uniqueness of Solutions for a Nonlinear Coupled System of Fractional Differential Equations on Time Scales. Differ Equ Dyn Syst 30, 173–184 (2022). https://doi.org/10.1007/s12591-018-0409-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-018-0409-7

Keywords

Mathematics Subject Classification

Navigation