Skip to main content
Log in

An Investigation on Three Point Explicit Schemes and Induced Numerical Oscillations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Spurious induced oscillations have been one of the fundamental problem associated with numerical approximation of the solution of hyperbolic conservation laws. In this note, using notion of data dependent stability, generic three point schemes for scalar case are analysed to show that the induced oscillations depend on initial data too. Further, it is concluded that it is not possible to have an initial data independent, ’uniformly’ non-oscillatory three point fixed stencil scheme irrespective of its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Sonic region is the one where characteristics speed \(f'(u)\) changes its sign.

References

  1. Warming, R.F., Hyett, B.J.: The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comp. Phys. 14(2), 159–179 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lax, P.D.: Gibbs phenomena. J. Sci. Comput. 28(2–3), 445–449 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Godunov, S.K.: A Difference method for numerical solution of discontinuous solution of hydrodynamic equations. Matematicheskii Sbornik 47, 271306 (1959)

    Google Scholar 

  4. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure. Appl. Math. 13, 217–237 (1960)

    Article  MATH  Google Scholar 

  5. LeVeque, R.J.: Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zurich, 2nd edn. Birkhäuser Verlag, Basel (1992)

    Book  Google Scholar 

  6. Laney, C.B.: Computational Gas-Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Lefloach, P.G., Liu, J.G.: Generalized monotone schemes, discrete paths of extrema and discrete entropy conditions. Math. Comp. 68, 1025–1055 (1999)

    Article  MathSciNet  Google Scholar 

  8. Breuß, M.: An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws. ESAIM. Math. Model. Numer. Anal. 39(5), 965–994 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Jiequan, Tang, H., Warneke, G., Zhang, L.: Local oscillations in finite difference solutions of hyperbolic conservation laws. Math. Comput. 78(268), 1997–2018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, J., Yang, Z.: Heuristic modified equation analysis of oscillations in numerical solutions of conservation laws. SIAM J. Numer. Anal. 49(6), 2386–2406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes I. SIAM J. Numer. Anal. 24, 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comp. Phys. 77(2), 439–471 (1988)

    Article  MATH  Google Scholar 

  13. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Adv. Numer. Approx. Nonlinear Hyperb. Equ. Lect. Notes Math. 1697, 325–432 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Nessyahu, H., Tadmor, E.: Non-Oscillatory central differencing for hyperbolic conservation laws. J. Comp. Phys. 87(2), 408–436 (1990)

    Article  MATH  Google Scholar 

  15. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, 3rd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  16. van Leer, B.: Towards the ultimate conservative difference scheme, II. monotonicity and conservation combined in a second-order scheme. J. Comp. Phys 14(4), 361–370 (1974)

    Article  MATH  Google Scholar 

  17. Zhang, D., Jiang, C., Liang, D., Cheng, L.: A review on TVD schemes and a refined flux-limiter for steady-state calculations. J. Comp. Phys. 302, 114–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubey, R.K., Biswas, B., Gupta, V.: Local maximum principle satisfying high-order non-oscillatory schemes. Int. J. Numer. Meth. Fluids 81(11), 689–715 (2016)

  19. Dubey, R.K.: Data dependent stability of forward in time and centred in space (FTCS) scheme for scalar hyperbolic equations. Int. J. Numer. Anal. Model. Univ. Alberta 13(5), 689–704 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Dubey, R.K., Biswas, B.: An analysis on induced numerical oscillations by Lax-Friedrichs scheme. Differ. Equ. Dyn. Syst. (Springer) 25(2), 151–168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Dubey.

Additional information

Carried out work is supported through DST-SERB India project EMR/2016/000394.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, R.K., Parvin, S. An Investigation on Three Point Explicit Schemes and Induced Numerical Oscillations. Differ Equ Dyn Syst 27, 83–90 (2019). https://doi.org/10.1007/s12591-017-0382-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0382-6

Keywords

Navigation