Numerical Solutions of Non-Linear System of Higher Order Volterra Integro-Differential Equations using Generalized STWS Technique

Original Research
  • 45 Downloads

Abstract

In this article, we deal with non-linear system of higher order Volterra integro-differential equations and their numerical solutions using the Single Term Walsh Series (STWS) method. The connections between STWS coefficients of the unknown functions and its derivatives are derived. The non-linear system of Volterra integro-differential equations are converted into a system of non-linear algebraic equations using the Single Term Walsh Series coefficients. Solving these system of algebraic equations, we obtain the discrete numerical solutions of the non-linear Volterra integro-differential equations. Numerical examples are presented to show the efficiency and applicability of this STWS method for solving the non-linear system of higher order Volterra integro-differential equations.

Keywords

Volterra equations Integro-differential equations Single Term Walsh Series (STWS) Numerical methods Non-linear systems 

Mathematics Subject Classification

34K28 45G15 47G20 45J05 

Notes

Acknowledgements

One of the authors Mr. R. Chandra Guru Sekar would like to thank National Institute of Technology, Tiruchirappalli, for the financial support through Institute fellowship with Grant Number 1.

References

  1. 1.
    Abbasbandy, S., Taati, A.: Numerical Solution of the System of Nonlinear Volterra Integro-Differential Equations with Nonlinear Differential Part by the Operational Tau Method and Error Estimation. J. Comput. Appl. Math. 231(1), 106–113 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arikoglu, A., Ozkol, I.: Solutions of Integral and Integro-Differential Equation Systems by Using Differential Transform Method. Comput. Math. Appl. 56(9), 2411–2417 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Balachandran, K., Murugesan, K.: Analysis of Different Systems via Single-Term Walsh Series Method. Int. J. Comput. Math. 33(3–4), 171–179 (1990)CrossRefMATHGoogle Scholar
  4. 4.
    Balachandran, K., Murugesan, K.: Analysis of Electronic Circuits using the Single-Term Walsh Series Approach. Int. J. Electron 69(3), 327–332 (1990)CrossRefMATHGoogle Scholar
  5. 5.
    Balachandran, K., Murugesan, K.: Optimal Control of Singular Systems via Single-Term Walsh Series. Int. J. Comput. Math. 43(3–4), 153–159 (1992)CrossRefMATHGoogle Scholar
  6. 6.
    Balakumar, V., Murugesan, K.: Single-Term Walsh Series Method for Systems of Linear Volterra Integral Equations of the Second Kind. Appl. Math. Comput. 228, 371–376 (2014)MathSciNetMATHGoogle Scholar
  7. 7.
    Bellomo, N., Firmani, B., Guerri, L.: Bifurcation Analysis for a Nonlinear System of Integro-Differential Equations Modelling Tumor-Immune Cells Competition. Appl. Math. Lett. 12(2), 39–44 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Berenguer, M., Garralda-Guillem, A., Ruiz Galán, M.: An Approximation Method for Solving Systems of Volterra Integro-Differential Equations. Appl. Numer. Math. 67, 126–135 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Biazar, J.: Solution of Systems of Integral-Differential Equations by Adomian Decomposition Method. Appl. Math. Comput. 168(2), 1232–1238 (2005)MathSciNetMATHGoogle Scholar
  10. 10.
    Biazar, J., Aminikhah, H.: A New Technique for Solving Nonlinear Integral-Differential Equations. Comput. Math. Appl. 58(11), 2084–2090 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Biazar, J., Ebrahimi, H.: A Strong Method for Solving Systems of Integro-Differential Equations. Appl. Math. 2(09), 1105 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Biazar, J., Ghazvini, H., Eslami, M.: He Homotopy Perturbation Method for Systems of Integro-Differential Equations. Chaos Solitons Fractals 39(3), 1253–1258 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chandra Guru Sekar, R., Balakumar, V., Murugesan, K.: Method of Solving Linear System of Volterra Integro-Differential Equations using the Single Term Walsh Series. Int. J. Appl. Comput. Math. (2015). doi: 10.1007/s40819-015-0115-x
  14. 14.
    Chandra Guru Sekar, R., Murugesan, K.: STWS Approach for Hammerstein System of Non-Linear Volterra Integral Equations of the Second Kind. Int. J. Comput. Math. (2016). doi: 10.1080/00207160.2016.1247444
  15. 15.
    Chandra Guru Sekar, R., Murugesan, K.: System of Linear Second Order Volterra Integro-Differential Equations Using Single Term Walsh Series Technique. Appl. Math. Comput. 273, 484–492 (2016)Google Scholar
  16. 16.
    Ebadian, A., Khajehnasiri, A.A.: Block-Pulse Functions and their Applications to Solving Systems of Higher-Order Nonlinear Volterra Integro-Differential Equations. Electron. J. Differ. Equations 2014(54), 1–9 (2014)MathSciNetMATHGoogle Scholar
  17. 17.
    Pushpam, A.E.K., Dhayabaran, D.P., Amirtharaj, E.H.: Numerical Solution of Higher Order Systems Of IVPs Using Generalized STWS Technique. Appl. Math. Comput. 180(1), 200–205 (2006)Google Scholar
  18. 18.
    Hashim, I.: Adomian Decomposition Method for Solving bvps for Fourth-order Integro-differential Equations. J. Comput. Appl. Math. 193(2), 658–664 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Palanisamy, K.R.: Analysis and Optimal Control of Linear Systems via Single-Term Walsh Series Approach. Int. J. Syst. Sci. 12(4), 443–454 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rao, G.P.: Piecewise Constant Orthogonal Functions and heir Application to Systems and Control, vol. 55. Springer, Berlin, Heidelberg, New York (1983)CrossRefGoogle Scholar
  21. 21.
    Rao, G.P., Palanisamy, K.R., Srinivasan, T.: Extension of Computation Beyond the Limit of Initial Normal Interval in Walsh Series Analysis of Dynamical Systems. IEEE Trans. Autom. Control 25(2), 317–319 (1980)CrossRefMATHGoogle Scholar
  22. 22.
    Rashidinia, J., Tahmasebi, A.: Systems of Nonlinear Volterra Integro-Differential Equations. Numer. Algorithms 59(2), 197–212 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sahu, P., Ray, S.S.: Legendre Wavelets Operational Method for the Numerical Solutions of Nonlinear Volterra Integro-Differential Equations System. Appl. Math. Comput. 256, 715–723 (2015)MathSciNetMATHGoogle Scholar
  24. 24.
    Sannuti, P.: Analysis and synthesis of dynamic systems via block-pulse functions. In: Proceedings of the Institution of Electrical Engineers, pp. 569–571. IET (1977)Google Scholar
  25. 25.
    Sepehrian, B.: Single-Term Walsh Series method for solving Volterra’s population model. Int. J. Appl. Math. Res. 3(4), 458–463 (2014)CrossRefGoogle Scholar
  26. 26.
    Sepehrian, B., Razzaghi, M.: Solution of Time-varying Singular Nonlinear Systems by Single-term Walsh Series. Math. Probl. Eng. 2003(3), 129–136 (2003)CrossRefMATHGoogle Scholar
  27. 27.
    Sepehrian, B., Razzaghi, M.: Single-Term Walsh Series Method for the Volterra Integro-Differential Equations. Eng. Anal. Bound. Elem. 28(11), 1315–1319 (2004)CrossRefMATHGoogle Scholar
  28. 28.
    Sepehrian, B., Razzaghi, M.: Solution of Nonlinear Volterra-Hammerstein Integral Equations via Single-Term Walsh Series Method. Math. Probl. Eng. 2005(5), 547–554 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2017

Authors and Affiliations

  1. 1.Department of MathematicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations